
Large Synoptic Survey Telescope (LSST)

Data Management Database Design

Jacek Becla, Daniel Wang, Serge Monkewitz, K-T Lim, John Gates,
Andy Salnikov, Andrew Hanushevsky, Douglas Smith, Bill Chickering,

Michael Kelsey, and Fritz Mueller

LDM-135

Latest Revision: 2017-07-07

This LSST document has been approved as a Content-ControlledDocument by the LSSTDMTech-

nical Control Team. If this document is changed or superseded, the new document will retain

the Handle designation shown above. The control is on the most recent digital document with

this Handle in the LSST digital archive and not printed versions. Additional information may be

found in the corresponding DM RFC.

Abstract

This document discusses the LSST database system architecture.

LARGE SYNOPTIC SURVEY TELESCOPE

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

Change Record

Version Date Description Owner name
1.0 2009-06-15 Initial version. Jacek Becla
2.0 2011-07-12 Most sections rewritten, added scalability test

section
Jacek Becla

2.1 2011-08-12 Refreshed future-plans and schedule of test-
ing sections, added section about fault toler-
ance.

Jacek Becla, Daniel
Wang

3.0 2013-08-02 Synchronized with latest changes to the re-
quirements [LSE-163]. Rewrote most of the
“Implementation” chapter. Documented new
tests, refreshed all other chapters.

Jacek Becla, Daniel
Wang, Serge Monke-
witz, Kian-Tat Lim,
Douglas Smith, Bill
Chickering

3.1 2013-10-10 Refreshed numbers based on latest LDM-141.
Updated shared scans (implementation) and
300-node test sections, added section about
shared scans demonstration

Jacek Becla, Daniel
Wang

3.2 2013-10-10 TCT approved R Allsman
2016-07-18 Update with async query, shared scan, sec-

ondary index, XRootD, metadata service infor-
mation.

John Gates, Andy
Salnikov, Andrew
Hanushevsky, Michael
Kelsey, Fritz Mueller

2017-07-05 Move historical investigations to separate
documents: DMTN-046, DMTN-047, DMTN-
048, DMTR-21, DMTR-12

T. Jenness

4.0 2017-07-07 Bring up to date with current status, condense
requirements section, re-order sections for
improved readability. Approved in RFC-358.

Fritz Mueller

Document curator: Fritz Mueller
Document source location: https://github.com/lsst/LDM-135

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

ii

https://jira.lsstcorp.org/browse/RFC-358
https://github.com/lsst/LDM-135

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

Contents

1 Executive Summary 1

2 Introduction 2

3 Requirements 3

3.1 General Requirements . 3

3.2 Data Production Related Requirements . 3

3.3 Query Access Related Requirements . 4

3.4 Discussion . 5

3.4.1 Design Considerations . 5

3.4.2 Query complexity and access patterns . 6

4 Baseline Architecture 7

4.1 Alert Production and Up-to-date Catalog . 7

4.2 Data Release Production . 10

4.3 User Query Access . 11

4.3.1 Distributed and parallel . 11

4.3.2 Shared-nothing . 11

4.3.3 Indexing . 12

4.3.4 Shared scanning . 13

4.3.5 Clustering . 14

4.3.6 Partitioning . 14

4.3.7 Long-running queries . 17

4.3.8 Technology choice . 17

5 Implementation (Qserv) 18

5.1 Components . 18

5.1.1 MySQL . 18

5.1.2 XRootD . 19

5.2 Partitioning . 20

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

iii

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

5.3 Query Generation . 20

5.3.1 Processing modules . 21

5.3.2 Processing module overview . 22

5.4 Dispatch . 23

5.4.1 Wire protocol . 23

5.4.2 Frontend . 24

5.4.3 Worker . 25

5.5 Threading Model . 25

5.6 Aggregation . 26

5.7 Indexing . 26

5.7.1 Secondary Index Structure . 27

5.7.2 Secondary Index Loading . 28

5.8 Data Distribution . 28

5.8.1 Database data distribution . 28

5.8.2 Failure and integrity maintenance . 29

5.9 Metadata . 30

5.9.1 Static metadata . 30

5.9.2 Dynamic metadata . 31

5.9.3 Architecture . 32

5.9.4 Typical Data Flow . 32

5.10 Shared Scans . 33

5.10.1 Background . 34

5.10.2 Implementation . 34

5.10.3 Memory management . 36

5.10.4 XRootD scheduling support . 37

5.10.5 Multiple tables support . 37

5.11 Level 3: User Tables, External Data . 38

5.12 Cluster and Task Management . 38

5.13 Fault Tolerance . 39

5.14 Next-to-database Processing . 41

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

iv

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

5.15 Administration . 41

5.15.1 Installation . 41

5.15.2 Data loading . 42

5.15.3 Administrative scripts . 44

5.16 Current Status and Future Plans . 45

5.17 Open Issues . 47

6 Risk Analysis 48

6.1 Potential Key Risks . 48

6.2 Risk Mitigations . 50

7 References 51

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

v

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

Data Management Database Design

1 Executive Summary

Two facets of LSST database architecture and their motivating requirements are discussed:
database architecture in support of real time Alert Production, and database architecture in
support of user query access to catalog data. Following this, Qserv is explored in depth as an
implementation of the query access architecture.

The LSST baseline database architecture for real time Alert Production relies on horizontal
time-based partitioning. To guarantee reproducibility, no-overwrite-update techniques com-
bined with maintaining validity time for appropriate rows are employed. Two database repli-
cas are maintained to isolate live production catalogs from user queries; the replicas are syn-
chronized in real time using native database replication.

The LSST baseline database architecture for user query access to catalog data is anMPP (mas-
sively parallel processing) relational database composed of a single-node non-parallel DBMS,
a distributed communications layer, and a master controller, all running on a shared-nothing
cluster of commodity servers with locally attached spinning disk drives, capable of incremen-
tal scaling and recovering fromhardware failures without disrupting running queries. All large
catalogs are spatially partitioned horizontally into materialized chunks, and the remaining cat-
alogs are replicated on each server; the chunks are distributed across all nodes. The Ob-
ject catalog is further partitioned into sub-chunks with overlaps, materialized on-the- fly when
needed. Chunking is handled automatically without exposure to users. Selected tables are
also partitioned vertically to maximize performance of most common analysis. The system
uses a few critical indexes to speed up spatial searches, time series analysis, and simple but
interactive queries. Shared scans are used to answer all but the interactive queries. Such an
architecture is primarily driven by the variety and complexity of anticipated queries, ranging
from single object lookups to complex 𝑂(𝑛2) full-sky correlations over billions of elements.

A prototype implementation of the baseline architecture for user query access as described
above, Qserv, was developed during the R&D phase of LSST, and its feasibility was demon-
strated in early testing. Productization was subsequently planned and resourced for the con-
struction phase of LSST and is presently underway.

Qserv leverages two mature, open-source technologies as major components of its design:
MySQL as a SQL execution engine (though any alternative SQL engine could be substituted

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

1

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

without undue effort if need be), and XRootD1 [11] to provide a distributed-system framework
for fault-tolerant, elastic, content-addressed messaging.

We currentlymaintain three running instances ofQserv at a scale of approximately 30 physical
nodes each in continuous operation on dedicated hardware clusters at NCSA and CC-IN2P3.
The system has been demonstrated to correctly distribute and execute both low and high
volume queries, including small-area cone and object searches, region restricted queries, and
full table scans including large-area near-neighbor searches. Analytic queries involving SciSQL
UDFs in both filter and aggregation clauses have also been demonstrated. Scale testing has
been successfully conducted on the above-mentioned clusters with datasets of up to approx-
imately 70 TB, and we expect to cross the 100 TB mark as tests continue in 2017. To date the
system is on track through a series of graduated data-challenge style tests to meet or exceed
the stated performance requirements for the project.

If an equivalent open-source, community supported, off-the-shelf database system were to
becomeavailable in time, it could present significant support cost advantages over a production-
ready Qserv. The largest barrier preventing us from using an off-the-shelf system is lack of
sufficient spherical geometry and spherical partitioning support.

To increase the chances such a system will become reality in the next few years, we closely
collaborate with the MonetDB open source columnar database team – a successful demon-
stration of Qserv based on MonetDB instead of MySQL was done in 2012. Further, to stay
current with the state-of-the-art in petascale data management and analysis, we continue a
dialog with all relevant solution providers, both DBMS and Map/Reduce, as well as with data-
intensive users, both industrial and scientific, through the XLDB2 conference series we lead,
and beyond.

2 Introduction

This document discusses the LSST database systemarchitecture in general, and an implemen-
tation of part of that architecture (Qserv) in particular.

Section 3 summarizes LSST database-related requirements that motivate the architecture.
Section 4 discusses the baseline architecture itself. Section 5 discusses Qserv as an imple-
mentation of the baseline architecture for user query access. Section 6 covers attendant risk

1http://xrootd.org
2https://xldb.org

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

2

http://xrootd.org
https://xldb.org

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

analysis. For some additional background, DMTN-046 covers in-depth analysis of off-the-shelf
potential solutions (Map/Reduce and RDBMS) as of 2013, andDMTR-21 andDMTR-12 describe
large scale Qserv tests from 2013. The full Qserv test specification is described in LDM-552.
DMTN-048 discusses the original design trade-offs and decision process, including small scale
tests that were run and some Qserv demonstrations.

3 Requirements

Formal DM database requirements are called out in LDM-555. For purposes of exposition,
this section summarizes some of the key requirements which drive the LSST database archi-
tecture.

3.1 General Requirements

Incremental scaling. The system must scale to tens of petabytes and trillions of rows. It
must grow as the data grows and as the access requirements grow. New technologies that
become available during the life of the system must be able to be incorporated easily. For
quantitative storage, disk and network bandwidth and I/O analyses, see LDM-141.

Reliability. The system must not lose data, and it must provide at least 98% up time in the
face of hardware failures, software failures, system maintenance, and upgrades.

Low cost. It is essential to not overrun the allocated budget, thus a cost-effective, preferably
open-source solution is strongly preferred.

3.2 Data Production Related Requirements

The LSST database catalogs will be generated by a small set of production pipelines:

• Data Release Production – it produces all key catalogs. Ingest rates are very modest, as
DRP takes several months to complete and is dominated by CPU-intensive application
jobs. Ingest can be done separately from pipeline processing, as a post-processing step.

• Nightly Alert Production – it produces difference image sources, and updates the DiaOb-
ject, SSObject, DiaSource, DiaForcedSource catalogs. Since alerts need to be generated
in under aminute after data has been taken, data has to be ingested/updated in almost-

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

3

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

real time. The number of row updates/ingested is modest: ~40K new rows and updates
occur every ~39 sec [7].

• Calibration Pipeline – it produces calibration information. Due to small data volume and
no stringent timing requirements, ingest bandwidth needs are very modest.

In addition, the camera and telescope configuration is captured in the Engineering & Facility
Database. Data volumes are very modest.

Further, the Level 1 live catalog will need to be updated with minimal delay. This catalog
should not be taken off-line for extended periods of time.

The database system must allow for occasional schema changes for the Level 1 data, and
occasional changes that do not alter query results3 for the Level 2 data after the data has
been released. Schemas for different data releases are allowed to be very different.

3.3 Query Access Related Requirements

The ScienceData Archive Data Release query load is defined primarily in terms of access to the
large catalogs in the archive: Object, Source, and ForcedSource. Queries to image metadata,
for example, though numerous, are expected to be fast. In general the following are required:

Reproducibility. Queries executed on any Level 1 and Level 2 data products must be repro-
ducible.

Real time. A large fraction of ad-hoc user access will involve so called “low-volume” queries
– queries that touch small area of sky, or request small number of objects. These queries are
required to be answered in a few seconds. On average, we expect to see ~100 such queries
running at any given time.

Fast turnaround. High-volume queries – queries that involve full-sky scans are expected
to be answered in approximately 1 hour, while more complex full-sky spatial and temporal
correlations are expected to be answered in ~8-12 hours. ~50 simultaneous high-volume
queries are expected to be running at any given time.

3Example of non-altering changes including adding/removing/resorting indexes, adding a new column with
derived information, changing type of a columnwithout loosing information, (e.g. FLOAT to DOUBLEwould be always
allowed, DOUBLE to FLOAT would only be allowed if all values can be expressed using FLOAT without loosing any
information)

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

4

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

Cross-matching with external/user data. Occasionally, LSST database catalog will need to
be cross-matched with external catalogs: both large, such as SDSS, SKA, or Gaia, and small,
such as small amateur data sets. Users should be able to save results of their queries, and
access them during subsequent queries.

Query complexity. The system needs to handle complex queries, including spatial correla-
tions, time series comparisons. Spatial correlations are required for the Object catalog only
– this is an important observation, as this class of queries requires highly specialized, 2-level
partitioning with overlaps.

Flexibility. Sophisticated end users need to be able to access all this data in a flexible way
with as few constraints as possible. Many end users will want to express queries directly in
SQL, so most of basic SQL92 will be required.

3.4 Discussion

3.4.1 Design Considerations

The above requirements have important implications on the LSST data access architecture.

• The system must allow rapid selection of small number of rows out of multi-billion row
tables. To achieve this, efficient data indexing in both spatial and temporal dimensions
is essential.

• The system must efficiently join multi-trillion with multi-billion row tables. Denormal-
izing these tables to avoid common joins, such as Object with Source or Object with
ForcedSource, would be prohibitively expensive.

• The system must provide high data bandwidth. In order to process terabytes of data in
minutes, data bandwidths on the order of tens to hundreds of gigabytes per second are
required.

• To achieve high bandwidths, to enable expandability, and to provide fault tolerance, the
system will need to run on a distributed cluster composed of multiple machines.

• The most effective way to provide high-bandwidth access to large amounts of data is to
partition the data, allowing multiple machines to work against distinct partitions. Data
partitioning is also important to speed up some operations on tables, such as index
building.

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

5

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

• Multiple machines and partitioned data in turn imply that at least the largest queries
will be executed in parallel, requiring the management and synchronization of multiple
tasks.

• Limited budget implies the systemneeds to getmost out available hardware, and scale it
incrementally as needed. The systemwill be disk I/O limited, and thereforewe anticipate
attaching multiple queries to a single table scan (shared scans) will be a must.

3.4.2 Query complexity and access patterns

A compilation of representative queries provided by the LSST Science Collaborations, the Sci-
ence Council, and other surveys have been captured [5]. These queries can be divided into
several distinct groups: analysis of a single object, analysis of objects meeting certain criteria
in a region or across entire sky, analysis of objects close to other objects, analysis that require
special grouping, time series analysis and cross match with external catalogs. They give hints
as to the complexity required: these queries include distance calculations, spatially localized
self-joins, and time series analysis.

Small queries are expected to exhibit substantial spatial locality (refer to rows that contain
similar spatial coordinates: right ascension and declination). Some kinds of large queries are
expected to exhibit a slightly different form of spatial locality: joins will be among rows that
have nearby spatial coordinates. Spatial correlations will be executed on the Object table;
spatial correlations will not be needed on Source or ForcedSource tables.

Queries related to time series analysis are expected to need to look at the history of obser-
vations for a given Object, so the appropriate Source or ForcedSource rows must be easily
joined and aggregate functions operating over the list of Sources must be provided.

External data sets and user data, including results from past queries may have to be dis-
tributed alongside distributed production table to provide adequate join performance.

The query complexity has important implications on the overall architecture of the entire sys-
tem.

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

6

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

4 Baseline Architecture

This section describes themost important aspects of the LSST baseline database architecture.
The choice of the architecture is driven by the project requirements (see LDM-555) as well as
cost, availability, and maturity of the off-the-shelf solutions currently available on the mar-
ket (see DMTN-046), and design trade-offs (see DMTN-048). The architecture is periodically
revisited: we continuously monitor all relevant technologies, and accordingly fine-tune the
baseline architecture.

In summary:

• The LSST baseline architecture for Alert Production is a (yet to be selected) off-the-shelf
RDBMS system which uses replication for fault tolerance and which takes advantage of
horizontal (time-based) partitioning;

• The baseline architecture for user access to Data Releases is an MPP (massively paral-
lel processing) relational database running on a shared-nothing cluster of commodity
servers with locally attached spinning disk drives; capable of (a) incremental scaling and
(b) recovering from hardware failures without disrupting running queries. All large cat-
alogs are spatially partitioned into materialized chunks, and the remaining catalogs are
replicated on each server; the chunks are distributed across all nodes. The Object cat-
alog is further partitioned into sub-chunks with overlaps,4 materialized on-the-fly when
needed. Shared scans are used to answer all but low-volume user queries.

4.1 Alert Production and Up-to-date Catalog

Alert Production involves detection and measurement of difference-image-analysis sources
(DiaSources). New DiaSources are spatially matched against the most recent versions of ex-
isting DiaObjects, which contain summary properties for variable and transient objects (and
false positives). Unmatched DiaSources are used to create new DiaObjects. If a DiaObject
has an associated DiaSource that is no more than a month old, then a forced measurement
(DiaForcedSource) is taken at the position of that object, whether a corresponding DiaSource
was detected in the exposure or not.

The output of Alert Production consists mainly of three large catalogs – DiaObject, DiaSource,
4A chunk’s overlap is implicitly contained within the overlaps of its edge sub-chunks.

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

7

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

and DiaForcedSource - as well as several smaller tables that capture information about e.g.
exposures, visits and provenance. These catalogs will be modified live every night.

Note that existingDiaObjects are never overwritten. Instead, newversions of theAP-produced
and DRP-produced DiaObjects are inserted, allowing users to retrieve (for example) the prop-
erties of DiaObjects as known to the pipeline when alerts were issued against them. To enable
historical queries, each DiaObject row is tagged with a validity start and end time. The start
time of a new DiaObject version is set to the observation time of the DiaSource or DiaForced-
Source that led to its creation, and the end time is set to infinity. If a prior version exists, then
its validity end time is updated (in place) to equal the start time of the new version. As a result,
the most recent versions of DiaObjects can always be retrieved with:

SELECT * FROM DiaObject WHERE va l id i tyEnd = i n f i n i t y

Versions as of some time t are retrievable via:

SELECT * FROM DiaObject WHERE v a l i d i t y S t a r t <= t AND t < va l id i tyEnd

Note that a DiaSource can also be re-associated to a solar-system object during day time
processing. This will result in a new DiaObject version unless the DiaObject no longer has any
associated DiaSources. In that case, the validity end time of the existing version is set to the
time at which the re-association occurred.

Once a DiaSource is associated with a solar system object, it is never associated back to a
DiaObject. Therefore, rather than also versioning DiaSources, columns for the IDs of both the
associated DiaObject and solar system object, as well as a re-association time, are included.
Re-association will set the solar system object ID and re-association time, so that DiaSources
for DiaObject 123 at time t can be obtained using:

SELECT *
FROM DiaSource
WHERE diaObject Id = 123
AND midPointTai <= t
AND (ssObjectId i s NULL OR ssObjectReassocTime > t)

DiaForcedSources are never re-associated or updated in any way.

From the database point of view then, the alert production pipeline will perform the following
database operations 189 times (once per LSST CCD) per visit (every 39 seconds):

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

8

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

1. Issue a point-in-region query against the DiaObject catalog, returning the most recent
versions of the objects falling inside the CCD.

2. Use the IDs of these diaObjects to retrieve all associated diaSources and diaForced-
Sources.

3. Insert new diaSources and diaForcedSources.

4. Update validity end times of diaObjects that will be superseded.

5. Insert new versions of diaObjects.

All spatial joins will be performed on in-memory data by pipeline code, rather than in the
database. While Alert Production does also involve a spatial join against the Level 2 (DRP-
produced) Object catalog, this does not require any database interaction: Level 2 Objects
are never modified, so the Object columns required for spatial matching will be dumped to
compact binary files once per Data Release. These files will be laid out in a way that allows for
very fast region queries, allowing the database to be bypassed entirely.

The DiaSource and DiaForcedSource tables will be split into two tables, one for historical data
and one containing records inserted during the current night. The current-night tables will
be small and rely on a transactional engine like InnoDB, allowing for speedy recovery from
failures. The historical-data tables will use the faster non-transactional MyISAM or Aria stor-
age engine, and will also take advantage of partitioning. The Data Release catalogs used to
seed the live catalogs will be stored in a single initial partition, sorted spatially (using the Hi-
erarchical Triangular Mesh trixel IDs for their positions). This means that the diaSources and
diaForcedSources for the diaObjects in a CCD will be located close together on disk, minimiz-
ing seeks. Every month of new data will be stored in a fresh partition, again sorted spatially.
Such partitions will grow to contain just a few billion rows over the course of a month, even
for the largest catalog. At the end of each night, the contents of the current-night table are
sorted and appended to the partition for the current-month, then emptied. Each month, the
entire current-month partition is sorted spatially (during the day), and a partition for the next
month is created.

For DiaObject, the same approach is used. However, DiaObject validity end-time updates can
occur in any partition, and are not confined to the current-night table. We therefore expect
to use a transactional storage engine like InnoDB for all partitions. Because InnoDB clusters
tables using the primary key, we will likely declare it to consist of a leading HTM ID column,

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

9

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

followed by disambiguating columns (diaObjectId, validityStart). The validity end time column
will not be part of any index.

No user queries will be allowed on the live production catalogs. We expect to maintain a
separate replica just for user queries, synchronized in real time using one-way master-slave
native database replication. The catalogs for user queries will be structured identically to the
live catalogs, and views will be used to hide the splits (using a “UNION ALL”).

For additional safety, wemight choose to replicate the small current-night tables, all DiaObject
partitions, and the remaining (small) changing tables to another hot stand-by replica. In case
of disastrous master failure that cannot be fixed rapidly, the slave serving user queries will
be used as a temporary replacement, and user queries will be disallowed until the problem is
resolved.

Based on the science requirements, only short-running, relatively simple user queries will be
needed on the Level 1 catalogs. The most complex queries, such as large-area near neigh-
bor queries, will not be needed. Instead, user queries will consist mainly of small-area cone
searches, light curve lookups, and historical versions of the same. Since the catalogs are
sorted spatially, we expect to be able to quickly answer spatial queries using indexed HTM
ID columns and the SciSQL UDFs, an approach that has worked well in data-challenges to
date. Furthermore, note that the positions of diaSources/diaForcedSources associated with
the same diaObject will be very close together, so that sorting to obtain good spatial locality
also ends up placing sources belonging to the same light curve close together. In other words,
the data organization used to provide fast pipeline query response is also advantageous for
user queries.

4.2 Data Release Production

Data Release Production will involve the generation of significantly larger catalogs than Alert
Production. However, these are produced over the course of several months, pipelines will
not write directly to the database, and there are no pipeline queries with very low-latency
execution time requirements to be satisfied. While we do expect several pipeline-related full
table scans over the course of a Data Release Production, we will need to satisfy many user
queries involving such scans on a daily basis. User query access is therefore the primary driver
of our scalable database architecture, which is described in detail below. For a description of
the data loading process, please see Section 5.15.2.

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

10

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

4.3 User Query Access

The user query access is the primary driver of the scalable database architecture. Such archi-
tecture is described below.

4.3.1 Distributed and parallel

The database architecture for user query access relies on amodel of distributing computation
among autonomous worker nodes. Autonomous workers have no direct knowledge of each
other and can complete their assigned work without data or management from their peers.
This implies that data must be partitioned, and the system must be capable of dividing a
single user query into sub-queries, and executing these sub-queries in parallel – running a
high-volume query without parallelizing it would take unacceptably long time, even if run on
very fast CPU. The parallelism and data distribution should be handled automatically by the
system and hidden from users.

4.3.2 Shared-nothing

Such architecture provides good foundation for incremental scaling and fault recovery: be-
cause nodes have no direct knowledge of each other and can complete their assigned work
without data or management from their peers, it is possible to add node to, or remove node
from such system with no (or with minimal) disruption. However, to achieve fault tolerance
and provide recover mechanisms, appropriate smarts have to be build into the node man-
agement software.

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

11

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

Distributor Combiner

MySQL
Node

MySQL
Node

MySQL
Node

MySQL
Node

Partitioned
Data

Partitioned
Data

Partitioned
Data

Partitioned
Data

Figure 1: Shared-nothing database architecture.

4.3.3 Indexing

Disk I/O bandwidth is expected to be the greatest bottleneck. Data can be accessed either
through index, which typically translates to a random access, or a scan, which translates to a
sequential read (unless multiple competing scans are involved).

Indexes dramatically speed up locating individual rows, and avoid expensive full table scans.
They are essential to answer low volume queries quickly, and to do efficient table joins. Also,
spatial indexes are essential. However, unlike in traditional, small-scale systems, the advan-
tages of indexes become questionable when a larger number of rows is to be selected from
a table. In case of LSST, selecting even a 0.01% of a table might lead to selecting millions of
rows. Since each fetch through an index might turn into a disk seek, it is often cheaper to
read sequentially from disk than to seek for particular rows via index, especially when the
index itself is out-of-memory. For that reason the architecture forgoes relying on heavy in-
dexing, only a small number of carefully selected indexes essential for answering low-volume
queries, enabling table joins, and speeding up spatial searches will be maintained. For an
analytical query system, it makes sense to make as few assumptions as possible about what

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

12

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

will be important to our users, and to try and provide reasonable performance for as broad
a query load as possible, i.e. focus on scan throughput rather than optimizing indexes. A fur-
ther benefit to this approach is that many different queries are likely to be able to share scan
I/O, boosting system throughput, whereas caching index lookup results is likely to provide far
fewer opportunities for sharing as the query count scales (for the amounts of cache we can
afford).

4.3.4 Shared scanning

Now with table-scanning being the norm rather than the exception and each scan taking a
significant amount of time, multiple full-scan queries would randomize disk access if they
each employed their own full-scanning read from disk. Shared scanning (also called convoy
scheduling) shares the I/O from each scan with multiple queries. The table is read in pieces,
and all concerning queries operate on that piece while it is in memory. In this way, results
from many full-scan queries can be returned in little more than the time for a single full-scan
query. Shared scanning also lowers the cost of data compression by amortizing the CPU cost
among the sharing queries, tilting the trade-off of increased CPU cost versus reduced I/O cost
heavily in favor of compression.

Shared scanning will be used for all high-volume and super-high volume queries. Shared
scanning is helpful for unpredictable, ad-hoc analysis, where it prevents the extra load from
increasing the disk I/O cost – only more CPU is needed. On average we expect to continuously
run the following scans:

• one full table scan of Object table for the latest data release only,

• one synchronized full table scan of Object, Source and ForcedSource tables every 12
hours for the latest data release only,

• one synchronized full table scan of Object and Object_Extra every 8 hours for the latest
and previous data releases.

Appropriate Level 3 user tables will be scanned as part of each shared scan as needed to
answer any in-flight user queries.

Shared scans will take advantage of table chunking explained below. In practice, within a
single node a scan will involve fetching sequentially a chunk of data at a time and executing

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

13

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

on this chunk all queries in the queue. The level of parallelism will depend on the number of
available cores.

Running multiple shared scans allows relatively fast response time for Object-only queries,
and supporting complex, multi-table joins: synchronized scans are required for two-way joins
between different tables. For self-joins, a single shared scan will be sufficient, however each
node must have sufficient memory to hold 2 chunks at any given time (the processed chunk
and next chunk). Refer to the sizing model [LDM-141] for further details on the cost of shared
scans.

Low-volume queries will be executed ad-hoc, interleaved with the shared scans. Given the
number of spinning disks is much larger than the number of low-volume queries running at
any given time, this will have very limited impact on the sequential disk I/O of the scans, as
shown in LDM-141.

4.3.5 Clustering

The data in the Object Catalog will be physically clustered on disk spatially – that means that
objects collocated in space will be also collocated on disk. All Source-type catalogs (Source,
ForcedSource, DiaSource, DiaForcedSource) will be clustered based on their corresponding
objectId – this approach enforces spatial clustering and collocates sources belonging to the
same object, allowing sequential read for queries that involve time series analysis.

SSObject catalog will be unpartitioned, because there is no obvious fixed position that we
could choose to use for partitioning. The associated diaSources (which will be intermixed
with diaSources associated with static diaSources) will be partitioned, according to their po-
sition. For that reason the SSObject-to-DiaSource join queries will require index searches on
all chunks, unlike DiaObject-to-DiaSource queries. Since SSObject is small (low millions), this
should not be an issue.

4.3.6 Partitioning

Datamust be partitioned among nodes in a shared-nothing architecture. While some sharding
approaches partition data based on a hash of the primary key, this approach is unusable for
LSST data since it eliminates optimizations based on celestial objects’ spatial nature.

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

14

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

4.3.6.1 Sharded data and sharded queries All catalogs that require spatial partitioning
(Object, Source, ForcedSource, DiaSource, DiaForcedSource) as well as all the auxiliary tables
associated with them, such as Object_Extra, will be divided into spatial partitions of roughly
the same area by partitioning then into declination zones, and chunking each zone into RA
stripes. Further, to be able to perform table joins without expensive inter-node data transfers,
partitioning boundaries for each partitioned table must be aligned, and chunks of different
tables corresponding to the same area of sky must be co-located on the same node. To en-
sure chunks are appropriately sized, the two largest catalogs, Source and ForcedSource, are
expected to be partitioned into finer-grain chunks. Since objects occur at an approximately-
constant density throughout the celestial sphere, an equal-area partition should spread a load
that is uniformly distributed over the sky.

Smaller catalogs that can be partitioned spatially, such as Alert and exposure metadata will
be partitioned spatially. All remaining catalogs, such provenance or SDQA tables will be repli-
cated on each node. The size of these catalogs is expected to be only a few terabytes.

With data in separate physical partitions, user queries are themselves fragmented into sepa-
rate physical queries to be executed on partitions. Each physical query’s result can be com-
bined into a single final result.

4.3.6.2 Two-level partitions Determining the size and number of data partitions may not
be obvious. Queries are fragmented according to partitions so an increasing number of par-
titions increases the number of physical queries to be dispatched, managed, and aggregated.
Thus a greater number of partitions increases the potential for parallelism but also increases
the overhead. For a data-intensive and bandwidth-limited query, a parallelization width close
to the number of disk spindles should minimize seeks and maximize bandwidth and perfor-
mance.

From a management perspective, more partitions facilitate re-balancing data among nodes
when nodes are added or removed. If the number of partitions were equal to the number of
nodes, then the addition of a new node would require the data to be re-partitioned. On the
other hand, if there were many more partitions than nodes, then a set of partitions could be
assigned to the new node without re-computing partition boundaries.

Smaller and more numerous partitions benefit spatial joins. In an astronomical context, we
are interested in objects near other objects, and thus a full𝑂(𝑛2) join is not required–a localized

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

15

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

spatial join is more appropriate. With spatial data split into smaller partitions, an SQL engine
computing the join need not even consider (and reject) all possible pairs of objects, merely
all the pairs within a region. Thus a task that is 𝑂(𝑛2) naively becomes 𝑂(𝑘𝑛) where 𝑘 is the
number of objects in a partition.

In consideration of these trade-offs, two-level partitioning seems to be a conceptually sim-
ple way to blend the advantages of both extremes. Queries can be fragmented in terms of
coarse partitions (“chunks”), and spatial near-neighbor joins can be executed over more fine
partitions (“sub-chunks”) within each partition. To avoid the overhead of the sub-chunks for
non-join queries, the system can store chunks and generate sub-chunks on-demand for spa-
tial join queries. On-the-fly generation for joins is cost-effective due to the drastic reduction
of pairs, which is true as long as there are many sub-chunks for each chunk.

4.3.6.3 Overlap A strict partitioning eliminates nearby pairs where objects from adjacent
partitions are paired. To produce correct results under strict partitioning, nodes need access
to objects from outside partitions, whichmeans that data exchange is required. To avoid this,
each partition can be stored with a precomputed amount of overlapping data. This overlap-
ping data does not strictly belong to the partition but is within a preset spatial distance from
the partition’s borders. Using this data, spatial joins can be computed correctly within the
preset distance without needing data from other partitions that may be on other nodes.

Overlap is needed only for the Object Catalog, as all spatial correlations will be run on that
catalog only. Guided by the experience from other projects including SDSS, we expect to
preset the overlap to ~1 arcmin, which results in duplicating approximately 30% of the Object
Catalog.

4.3.6.4 Spherical geometry Support for spherical geometry is not commonamongdatabases
and spherical geometry-based partitioning was non-existent in other solutions when we de-
cided to develop Qserv. Since spherical geometry is the norm in recording positions of celes-
tial objects (right-ascension and declination), any spatial partitioning scheme for astronomical
objects must account for its complexities.

4.3.6.5 Data immutability It is important to note that user query access operates on read-
only data. Not having to deal with updates simplifies the architecture and allows us to add

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

16

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

extra optimizations not possible otherwise. The Level 1 data which is updated is small enough
and will not require the scalable architecture – we plan to handle all Level 1 data set with out-
of-the box MySQL as described in Section 4.1.

4.3.7 Long-running queries

Many of the typical user queries may need significant time to complete, at the scale of hours.
To avoid re-submission of those long-running queries in case of various failures (networking
or hardware issues) the system will support asynchronous query execution mode. In this
mode users will submit queries using special options or syntax and the system will dispatch a
query and immediately return to user some identifier of the submitted query without blocking
user session. This query identifier will be used by user to retrieve query processing status,
query result after query completes, or a partial query result while query is still executing.

The system should be able to estimate the time which user query will need to complete and
refuse to run long queries in a regular blocking mode.

4.3.8 Technology choice

As explained inDMTN-046, no off-the-shelf solutionmeets the above requirements today, and
anRDBMS seems amuchbetter fit than aMap/Reduce-based systemprimarily due to features
such as indexes, schema, and speed. For that reason, our baseline architecture consists of
custom software built on two production components: an open source, “simple”, single-node,
non-parallel DBMS (MySQL) and XRootD. To ease potential future DBMSmigrations, the com-
munication with the underlying DBMS relies on basic DBMS functionality only, and avoids
vendor-specific features and additions.

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

17

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

Figure 2: Component connections in Qserv.

5 Implementation (Qserv)

A prototype implementation of the baseline architecture for user query access described
above, Qserv, was developed during the R&D phase of LSST, and its feasibility was demon-
strated in early testing (DMTR-21, DMTR-12). Productization was subsequently planned and
resourced for the construction phase of LSST and is presently underway. The system as cur-
rently implemented is described here.

5.1 Components

5.1.1 MySQL

To control the scope of effort, Qserv uses an existing SQL engine, MySQL, to perform as
much query processing as possible. MySQL is a good choice because of its active develop-
ment community, mature implementation, wide client software support, simple installation,
lightweight execution, and low data overhead. MySQL’s large development and user com-
munity means that expertise is relatively common, which could be important during Qserv’s
development or long-termmaintenance in the years ahead. MySQL’s MyISAM storage engine
is also lightweight and well-understood, giving predictable I/O access patterns without an ad-

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

18

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

vanced storage layout that may demand more capacity, bandwidth, and IOPS from a tightly
constrained hardware budget.

It isworth noting, however, thatQserv’s design and implementationdonot dependon specifics
of MySQL beyond glue code facilitating results transmission. Loose coupling is maintained in
order to allow the system to leverage a more advanced or more suitable database engine in
the future.

5.1.2 XRootD

The XRootD distributed file system is used to provide a distributed, data-addressed, repli-
cated, fault-tolerant communication facility for Qserv. Re-implementing these features would
have been non-trivial, so we wanted to leverage an existing system. XRootD has provided
scalability, fault-tolerance, performance, and efficiency for over 10 years to the high-energy
physics community. Its relatively flexible API enabled its use in our application as more of a
general communication routing system. Since it was designed to serve large data sets, we
were confident that it could mediate not only query dispatch communication, but also bulk
transfer of results.

A XRootD cluster is implemented as a set of data servers and redirectors. A client connects
to a redirector, which acts as a caching namespace lookup service that redirects clients to
appropriate data servers. In Qserv, XRootD data servers become Qserv workers by imple-
menting plug-ins within the XRootD framework which advertise partitioned data chunks as
addressable resources within the XRootD cluster. The Qserv master then dispatches work
and receives results as an XRootD client by dispatching messages to these resources.

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

19

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

Figure 3: XRootD.

5.2 Partitioning

In Qserv, large spatial tables are fragmented into spatial pieces in a two-level partitioning
scheme. The partitioning space is a spherical space definedby two angles𝜙 (right ascension/𝛼)
and 𝜃 (declination/𝛿). For example, theObject table is fragmented spatially, using a coordinate
pair specified in two columns: right-ascension and declination. On worker nodes, these frag-
ments are represented as tables namedObject_CC andObject_CC_SSwhere CC is the “chunk id”
(first-level fragment) and SS is the “sub-chunk id” (second-level fragment of the first larger frag-
ment. Sub-chunk tables are built on-the-fly to optimize performance of spatial join queries.
Large tables are partitioned on the same spatial boundaries where possible to enable joining
between them.

5.3 Query Generation

Qserv is unusual (though not unique) in processing a user query into one or more query frag-
ments that are subsequently distributed to and executed by off-the-shelf single-node RDBMS
software. This is done in the hopes of providing a distributed parallel query service while
avoiding a full re-implementation of common database features. However, we have found
that it is necessary to implement a query processing framework much like one found in a

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

20

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

more standard database, with the exception that the resulting query plans contain SQL state-
ments as the intermediate language.

A significant amount of query analysis not unlike a database query optimizer is required in
order to generate a distributed execution plan that accurately and efficiently executes user
queries. Incoming user queries are first parsed into an intermediate representation using a
modified SQL92-compliant grammar (Lubos Vnuk’s anltr-based SqlSQL2). The resulting query
representation is equivalent to the original user query, and does not include any stateful in-
terpretation, butmay not completely reflect the original syntax. The purpose of this represen-
tation is to provide a semantic representation that may be operated upon by query analysis
and transformation modules without the complexity of a parse tree containing every node in
the original EBNF grammar.

Once the intermediate representation has been created, it is processed by two sequences of
modules. The first sequence operates on the query as a single statement. A transformation
step occurs to split the single representation into a “plan” involving multiple phases of execu-
tion, one to be executed per-data-chunk, and one to be executed to combine the distributed
results into final user results. A second sequence is then applied on this plan to apply the
necessary transformations for an accurate result.

We have found that regular expressions and parse element handlers are insufficient to ana-
lyze and manipulate queries for anything beyond the most basic query syntax constructions.

5.3.1 Processing modules

The processing modules performmost of the work in transforming the user query into state-
ments that can produce a faithful result from a Qserv cluster. These include:

• Identify spatial indexing opportunities. This allows Qserv to dispatch spatially-restricted
queries on only a subset of the available chunks constituting a table. Spatial restrictions
given in Qserv-specific syntax are rewritten as boolean SQL clauses.

• Identify secondary index opportunities. Qserv databases designate one column (more
are under consideration) as a key columnwhose values are guaranteed to exist in exactly
one spatial location. Identification allows Qserv to convert point queries on this column
into spatial restrictions.

• Identify table joins and generate syntax to perform distributed join results. Qserv pri-

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

21

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

marily supports “near-neighbor” spatial joins for limited distances defined in the parti-
tioning coordinate space. Arbitrary joins between distributed tables are only supported
using the key column. Queries are classified according to data coverage and table scan-
ning. By identifying tables scanned in a query, Qserv is able to mark queries for execu-
tion using shared scanning, which greatly increases efficiency.

5.3.2 Processing module overview

Figure 4: Processing modules.

This figure illustrates the query preparation pipeline that generates physical queries from an
input query string. User query strings are parsed (1) into a structured query representation
that is passed through a sequence of processing modules (2) that operate on that represen-
tation in-place. Then, it is broken up (3) into pieces that are explicitly intended for parallel

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

22

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

execution on table partitions and pieces intended to merge parallel results into user results.
Another processing sequence (4) operates on this new representation, and then finally, con-
crete query strings are generated (5) for execution.

The two sequences of processing modules provide an extensible means to implement query
analysis and manipulation. Earlier prototypes performed analysis and manipulation during
parsing, but this led to a practically unmaintainable code base and the functionality has been
ported the processing module model. Processing is split into two sequences to provide the
flexibility tomodules thatmanipulate the physical structures while offering the simpler single-
query representation to modules that do not require the complexity. The clear separation
between parsing, whose only goal is to provide a intelligible and modifiable query represen-
tation, and the Qserv-specific analysis andmanipulation is a key factor in the overall flexibility,
maintainability, and extensibility of the system and should help the system adapt to current
and future LSST needs.

5.4 Dispatch

Qserv uses XRootD as a distributed, highly-available communications system to allow Qserv
frontends to communicate with data workers. Up until 2015, Qserv used a synchronous client
API with named files as communication channels. The current baseline system utilizes a gen-
eral two-way named-channeling system which eliminates explicit file abstractions in favor of
generalized protocol messages that can be flexibly streamed. The scheme is called Scalable
Service Interface (SSI) and is built on top of XRootD.

5.4.1 Wire protocol

Qserv encodes query dispatches in Google Protobufmessages, which contain SQL statements
to be executed by the worker and annotations that describe query dependencies and charac-
teristics. Transmitting query characteristics allowsQserv workers to optimize query execution
under changing CPU and disk loads as well as memory considerations. The worker need not
re-analyze the query to discover these characteristics or guess at conditions that cannot be
determined by query inspection.

Query results are also returned via Protobuf messages. Initial implementations transmitted
table dumps to avoid logic to encode and decode data values, but experience with the proto-
type MonetDB worker backend proved that data encoding and marshalling were constrained
problems whose solution could significantly improve overall query latency by avoiding mu-

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

23

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

tating metadata operations on worker and frontend DBMS systems. The system presently
encodes results in protobuf messages containing schema and row-by-row encoded data val-
ues. Streaming results directly from worker DBMS instances into frontend DBMS instances
is a technique under consideration, as is a custom aggregation engine for results that would
likely ease the implementation of providing partial query results to end users.

5.4.2 Frontend

In 2012, a new XRootD client API was developed to address our concerns over the older ver-
sion’s scalability (uncovered during a 150 node, 30TB scalability test [DMTR-21]). The new
client API began production use for the broader XRootD community in late 2012. Subse-
quently, work began under our guidance towards an XRootD Qserv client API that was based
on request-response interaction over named channels, instead of opening, reading, and writ-
ing files. A production version of this API, the Scalable Service Interface (SSI) became available
in early 2015 and Qserv has since been ported to use this interface. The port eliminated a
significant body of code that mapped dispatching and result-retrieval to file operations. The
SSI API now resides in the XRootD code base, where it may be exercised by other projects.

The SSI API provides Qserv with a fully asynchronous interface that eliminates nearly all block-
ing threads used by the Qserv frontend to communicate with its workers. This eliminated
one class of problems we encountered during large-scale testing. The SSI API has defined in-
terfaces that integrate smoothly with the Protobufs-encoded messages used by Qserv. Two
novel features were specifically added to improve Qserv performance. The streaming re-
sponse interface enables reducedbuffering in transmitting query results fromaworkermysqld
to a the frontend, which lowers end-to-end query latency and reduces storage requirements
on workers. The out-of-band meta-data response which arrives prior to the data results can
be used tomapout the Protobufs encoding and significantly simplify handling responsemem-
ory buffers.

The fully asynchronous API is crucial on the master because of the large number of concur-
rent chunk queries in flight expected in normal operation. For example, with the sky split into
10k pieces, having 10 full-scanning queries running concurrently would have 100k concurrent
chunk queries – too large a number of threads to allow on a single machine. Hence, an asyn-
chronous API to XRootD is crucial. Threads are used to parallelize multiple CPU-bound tasks.
While it does not seem to be important to parse/analyze/manipulate a single user query in
parallel (and such a task would be a research topic), the retrieval and processing of results
could be done in parallel if some portion of the aggregation/merging were done in Qserv

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

24

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

code rather than loaded into the frontend’s MySQL instance and merged via SQL queries.
Thus results processing should be parallelized among results from individual chunks, and
query parsing/analysis/manipulation can be parallelized among independent user queries.

5.4.3 Worker

The Qserv worker uses both threads and asynchronous calls to provide concurrency and par-
allelism. To service incoming requests from the XRootD API, an asynchronous API is used to
receive requests and enqueue them for action. Specifically, the Scalable Service Interface (SSI)
is used on Qserv workers as well. The interface provides a mirror image of the actions taken
on the front-end making the logic relatively easy to follow and the implementation less error
prone.

Threads are maintained in a thread pool to perform incoming queries and wait on calls into
the DBMS’s API (currently, the apparently synchronous MySQL C-API). Threads are allowed to
run in observance of the amount of parallel resources available. The worker estimates the
I/O dependency of each incoming chunk query in terms of the chunk tables involved and disk
resources involved, and attempts to ensure that disk access is almost completely sequential.
Thus if there are many queries that access the same table chunk, the worker allows as many
of them to run as there are CPU cores in the system, but if it has many queries that involve
different chunk tables, it allows fewer simultaneous chunk queries in order to ensure that only
one table scan per disk spindle occurs. Further discussion of this “shared scanning” feature
is described below.

5.5 Threading Model

Nearly every portion of Qserv is written using a combination of threaded and asynchronous
execution.

Qserv heavily relies on multi-threading to take advantage of all available CPU cores when
executing queries, as an example, to complete one full table scan on a table consisting of 1,000
chunks, 1,000 queries (processes) will be executed. To efficiently handle the large number
of processes that are executed on each worker, we ended up rewriting the XRootD client
and switching from a thread-per-request model to a thread-pool model. The new client is
completely asynchronous, with real call-backs.

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

25

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

mysqlproxy Single-threaded Lua code driving non-blocking mysql
client API

Frontend-C++ Processing thread per user-query for preparation;
Results-merging thread-per-user-query on-demand;

Frontend-XRootD Callback threads perform query transmission and re-
sults retrieval

Frontend-XRootD internal Threads for maintaining worker connections (< 1 per
host)

XRootD, cmsd Small thread pools for managing live network connec-
tions and performing lookups

Worker-XRootD plug-in Small thread pool O(#cores) to make blocking mysql C-
API calls into localmysqld; callback threads fromXRootD
perform admission/scheduling of tasks from frontend
and transmission of results

5.6 Aggregation

Qserv supports several SQL aggregation functions: AVG(), COUNT(), MAX(), MIN(), and SUM(),
and SQL92 level GROUP BY.

5.7 Indexing

Qserv eschews heavy indexing in general, due to the prohibitive overhead costs it would in-
cur as a result of the scale of the hosted data. Nevertheless, queries constrained by Object
primary key are anticipated to be a very common use case and are important to execute effi-
ciently. To that end, the current implementation admits one special-case global index onmas-
ter nodes, which can be used to map queries restricted by Object primary key to the chunks
and subchunkswhich contain thoseObjects. Query fragments can then be dispatched directly
to just the set of involved workers, where in-memory subchunk caching allows the fragments
to be efficiently executed. This special-case global index from Object primary key to chunk/-
subchunk is referred to as the “secondary index”.5

The secondary index utilizes one or more tables using the InnoDB storage engine on each
master node to perform lookups. Performance tests (Figure 5) on a single, dual-core host

5It is acknowledged that the name “secondary index”was poorly chosen, given its usualmeaning in the database
literature. This name will probably be changed in the near future.

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

26

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

with 1 TB hard disk storage (not SSD) have shown that this configuration will support a full
load of 40 billion rows in about 400,000 seconds (110 hours). A more realistic configuration
with multiple cores and SSD storage is expected to meet the requirement of fully loading in
less than 48 hours.

Figure 5: Performance tests of MySQL-based secondary index.

To improve the performance of the InnoDB storage engine for queries, the secondary index
may be split across a small number (dozens) of tables, each containing a contiguous range of
keys. This splitting, if done, will be independent of the partitioning of the database itself. The
contiguity of key ranges will allow the secondary index service to identify the appropriate split
table arithmetically via an in-memory lookup.

5.7.1 Secondary Index Structure

The secondary index consists of three columns: the Object primary key (objectId), the chunk
where all data with that key are located (chunkId), and the subchunk within that chunk where
data with the key are located (subChunkId). The objectId is assigned by the science pipelines
as a 64-bit integer value; the chunkId and subChunkId are both 16-bit integers which identify
spatial regions on the sky.

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

27

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

5.7.2 Secondary Index Loading

The InnoDB storage engine loads tables most efficiently if it is provided input data which has
been presorted according to the table’s primary key. When the secondary index information
is collected for loading (from each worker node handling a collection of chunks), it is sorted
by objectId, and may be divided into roughly equal “splits”. Each of those splits is loaded into
a table en masse.

To fully optimize the loading and table splitting, the entire index should be collected from
all workers and presorted in memory on the master. This is not reasonable for 40 billion
entries (requiring a minimum of 480 GB memory, plus overhead). Instead, the index data
from a single worker can be assumed to be a “representative sample” from the full range of
objectIds, so table splitting can be done using the first worker’s index data. The remaining
workers will be split and loaded according to those defined tables.

5.8 Data Distribution

LSST will maintain the released data store both on tapemedia and on a database cluster. The
tape archive is used for long-term archival. Three copies of the compressed catalog data will
be kept. The database cluster will maintain 3 online copies of the data. Because computer
clusters of reasonable size failure regularly, the cluster must maintain replicas in order to
provide continuous data access. A replication factor of 3 is needed in order to determine
data integrity by majority rule when one replica is corrupt.

If periodic unplanned downtime is acceptable, an on-tape replica may function as one of the
three. However, the use of tape dramatically increases the cost of recovering from a failure.
This may be acceptable for some tables, particularly those that are large and lesser-used,
although allowing service disruption may make it difficult to make progress on long-running
analysis on those large tables.

5.8.1 Database data distribution

The baseline database system will provide access for at least two database releases: latest
and previous . Data for each release will be spread out among all nodes in the cluster.

Data releases are partitioned spatially, and spatial pieces (chunks) are distributed in a round-
robin fashion across all nodes. This means that area queries involving multiple chunks are

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

28

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

almost guaranteed to involve resources on multiple nodes.

Each node should maintain at least 20% free space of its data storage allocation. The re-
maining free space is then available to be “borrowed” when another node fails. This will a
temporary use of storage capacity until more server resources can be put online, until the
80% storage use is returned.

5.8.2 Failure and integrity maintenance

There will be failures in any large cluster of node, in the nodes themselves, in data storage
volumes, in networks access and so on. These failures will remove access to data that is
resident on those nodes, but this loss of data access should not affect that ability of scientists
to analyze the dataset as a whole. We need to set a data availability time over 99.5% to ensure
confidence of the community in the stability of the system. To ensure this level of data access,
and to allow acceptable levels of node failures in a cluster, there will be replication of data on
a table level throughout the cluster.

The replication level will be that each table in the database will exist 3 times, each on separate
nodes. A monitoring layer to the system will check on the availability of each table every few
hours, although this time will be tuned in practice. When this layer sees that a table has less
than three replicas available, this will initiate a replication of that table to another nodes, not
currently hosting that table. The times for the checking, and speed of replication will be tuned
to the stability of the cluster, such that about 5% of all tables at any given time will only have
1 or 2 replicas. Three replicas will ensure that tables will be available even in cases of large
failures, or when nodes need to be migrated to new hardware in bulk.

Should an entire node fail, replicating that data to another single node would be fairly expen-
sive in terms of time (on the order of hours). We plan on having free space on each node,
filling local storage to 80%. The free space will be used for temporary storage of tables on
failures, where replicas can take place in parallel between nodes into this free space. When
new nodes with free storage are added to the cluster, then this data can be copied off this
free space into the drive, potentially taking several hours, but there will still be 3 replicas of
data during this time. Once this is complete, this data will have 4 replicas for the short period
of time until these tables can be removed from the temporary storage, returning each node
to 80% usage.

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

29

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

5.9 Metadata

Qserv needs to track various metadata information, static (not changing or changing very
infrequently), and dynamic (run-time) in order to maintain schema and data integrity and
optimize the cluster usage.

5.9.1 Static metadata

Qserv typically works with databases and tables distributed across many different machines:
it breaks individual large tables into smaller chunks and distributes them across many nodes.
All chunks that belong to the same logical table must have the same schema and partitioning
parameters. Different tables often need to be partitioned differently; for example some tables
might be partitioned with overlap (such as the Object table), some might be partitioned with
no overlap (for example the Source table), and some might not need partitioning at all (e.g.
a tiny Filter table). All this information about schema and partitioning for all Qserv-managed
databases and tables needs to be tracked and kept consistent across the entire Qserv cluster.

Implementation of the static metadata in Qserv is based on hierarchical key-value storage
which uses a regular MySQL database as a storage backend. This database is shared between
multiple masters and it must be served by a fault-tolerant MySQL server instance, e.g. using
a master-master replication solution like MariaDB Galera cluster. Database consistency is
critical for metadata and it should be implemented using one of the transactional database
engines in MySQL.

Static metadata may contain following information:

• Per-database and per-table partitioning and scan scheduling parameters.

• Table schema for each table, used to create database tables in all worker and master
instances; the schema in the master MySQL instance can be used to obtain the same
information when a table is already created.

• Database and table state information, used primarily by the process of database and
table creation or deletion.

• Definitions for the set of worker andmaster nodes in a cluster including their availability
status.

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

30

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

The main clients of the static metadata are:

• Administration tools (command-line utilities and modules) which allow one to define or
modify metadata structures.

• Qserv master(s), mostly querying partitioning parameters but also allowed to modify
table/database statuswhendeleting/creating new tables anddatabases. Master(s) should
not depend on node definitions inmetadata; the XRootD facility is used to communicate
with workers.

• A special “watcher” service which implements distributed processes of database and
table management.

• An initial implementation of the data loading application which will use the node defini-
tions and will create/update database and table definitions. This initial implementation
will eventually be replaced by a distributed loading mechanism which may be based on
separate mechanisms.

5.9.2 Dynamic metadata

In addition to static metadata, a Qserv cluster also needs to track its current state, and keep
various statistics about query execution. This sort of data is updated frequently, several times
per query execution, and is called dynamic metadata.

The implementation of the dynamic metadata is based on the MySQL database. Like static
metadata it needs to be shared between all master instances and is served via a single fault-
tolerant MySQL instance which is shared with static metadata database.

Dynamic metadata contains the following information:

• Definition of every master instance in a Qserv cluster.

• Record of every SELECT-type query processed by cluster. This record includes query
processing state and some statistical/timing information.

• Per-query list of table names used by the asynchronous queries; this information is used
to delay table deletion while async queries are in progress.

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

31

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

• Per-query worker information, which includes chunk id and identifying information for
the worker processing that chunk id. This information will be used to transparently
restart the master or migrate query processing to a different master in case of master
failure.

The most significant use of the dynamic metadata is to track execution of asynchronous
queries. When an async query is submitted it is registered in the dynamic metadata and its
ID is returned to the user immediately. Later users can request status information for that
query ID which is obtained from dynamic metadata. When query processing is finished, users
can request results and the master can obtain the location of the result data from dynamic
metadata.

Additionally, dynamic metadata can be used to collect statistical information about queries
that were executed in the past which may be an important tool in understanding and improv-
ing system performance.

5.9.3 Architecture

The Qserv metadata system is implemented based on master/server architecture: the meta-
data is centrally managed by a Qserv Metadata Server (qms). The information kept on each
worker is kept to a bare minimum: each worker only knows which databases it is supposed
to handle, and all remaining information can be fetched from the qms as needed. This follows
our philosophy of keeping the workers as simple as possible.

The real-timemetadata ismanaged inside qms in in-memory tables, periodically synchronized
with disk-based table. Such configuration allows reducing qms latency – important to avoid
delaying query execution time. Should a qms failure occur, the in-flight queries for which
the information was lost will be restarted. Since the synchronization to disk-based table will
occur relatively frequently (e.g. at least once per minute), the lost time is insignificant. To
avoid overloading the qms, only the high-level information available from Qserv-master is
stored in qms; all worker-based information is cached in a scratch space local to each worker
in a simple, raw form (e.g, key-value, ASCII file), and can be fetched on demand as needed.

5.9.4 Typical Data Flow

Static metadata:

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

32

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

1. Parts of the static metadata known before data is partitioned/loaded are loaded by the
administration scripts responsible for loading data into the database, then these scripts
start data partitioner.

2. The data partitioner reads static metadata loaded by the administration scripts, loads
remaining information.

3. When Qserv starts, it fetches all static metadata and caches it in memory in a special,
in-memory optimized C++ structure.

4. The contents of the in-memory metadata cache inside Qserv can be refreshed on de-
mand if the static metadata changes (for example, when a new database or a table is
added).

Dynamic-metadata:

1. Master loads the information for each query (when it starts, when it completes).

2. Detailed statistics are dumped by each worker into a scratch space kept locally. This in-
formation can be requested from each worker on demand. A typical use case: if all
chunk-queries except one completed, qms would fetch statistics for the still-running
chunk-query to estimate when the query might finish, whether to restart this query etc.

5.10 Shared Scans

Arbitrary full-table scanning queries must be supported in LSST’s baseline catalog, and in or-
der to provide this support cost-effectively and efficiently, Qserv implements shared scans.
Shared scans effectively reduce the I/O cost of executing multiple scanning queries concur-
rently, reducing the require system hardware and purchasing costs.

Shared scans reduce overall I/O costs by forcing incoming queries to share. When multiple
queries scan the same table, theoretically, they can completely share I/O and incur only the
I/O cost of a single query rather than the sum of their individual costs. In general, it is difficult
for queries to share I/O because their arrival times are random and uncorrelated. Each query
begins scanning at different times, and because LSST’s catalog tables will be so large, general
system caching is ineffective. In Qserv, scanning queries are broken up into many parts, and
shared scanning forces each query to operate on the same portion of data at the same time
by reordering and sequencing the query fragments.

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

33

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

5.10.1 Background

Historically, shared scanning has been a research topic that has very few real-world imple-
mentations. We know of only one implementation in use (Teradata). Most database imple-
mentations assume OS or database caching is sufficient, encouraging heavy use of indexing
to reduce the need of table scans. However, our experiments have shown that when tables
are large enough (by row count) and column access sufficiently variable (cannot index enough
columnswhen there are hundreds to choose from), indexes are insufficient. With large tables,
indexes no longer fit in memory, and even when they do fit in memory, the seek cost to re-
trieve each row is dominant when the index selects a percentage of rows, rather than some
finite number (thousands or less).

5.10.2 Implementation

The implementation of shared scans in Qserv is in two parts. The first part is a basic classifica-
tion of incoming queries as scanning queries or non-scanning queries. A query is considered
to scan a table if it depends on non-indexed column values and involves more than k chunks
(where k is a tunable constant). Note that involving multiple chunks implies that the query se-
lects from at least one partitioned table. This classification is performed during query analysis
on the front-end and leverages table metadata. The metadata includes a “scan rating”, which
is set by hand. Higher scan ratings indicate larger tables that take longer to read from disk.
The identified “scan tables” and their ratings are marked and passed along to Qserv workers,
which use the information in scheduling the fragments of these scanning queries.

The second part of the shared scans implementation is a scheduling algorithm that orders
query fragment execution to optimize cache effectiveness. Because Qserv relies on individual
off-the-shelf DBMS instances on worker nodes, it is not allowed to modify those instances to
implement shared scans. Instead, it issues query fragments ordered to maximize locality of
access in data and time, and tries to lock the files associated with the tables in memory as
much as possible. Using the identified scan tables and their ratings, theworker places themon
the appropriate scheduler. There will be at least three schedulers. One for queries expected
to complete in under an hour, which are expected to be related to the Object table. One for
queries expected to take less than eight hours, expected to be related to Object_Extra. And
one for scans expected to take eight to twelve hours for ForcedSource and/or Source tables.
The reasoning being that a single slow query can impede the progress of a shared scan and
all the other user queries on that scan. There may be a need for another scheduler to handle
queries taking more than 12 hours.

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

34

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

Each scheduler places incoming chunk queries into one of twopriority queues sorted by chunk
id then scan rating of the individual tables. If the query is for a chunk after the currently scan-
ning chunk id, it is placed on the active priority queue, otherwise it is placed on the pending
priority queue. After chunk id, the priority queue is sorted by the tablewith highest scan rating
to ensure that the largest tables in the chunk are grouped together.

Once the query is on the appropriate scheduler, the algorithm proceeds as follows: When a
dispatch slot is available, it checks the highest priority scheduler. If that scheduler has a query
fragment (hereafter called a task), and it is not at its quota limit, it is allowed to start its next
task, otherwise the worker checks the next scheduler. It continues doing this until a task has
been started or all the schedulers have been checked.

Each scheduler is only allowed to start a task under certain circumstances. There must be
enough threads available from the pool so that none of the other schedulers are starved for
threads as well as enough memory available to lock all the tables for the task in memory. If
the scheduler has no tasks running, it may start one task and have memory reserved for the
tables in that task. This should prevent any scheduler fromhanging due tomemory starvation
without requiring complicated logic, but it could incur extra disk I/O.

Schedulers check for tasks by first checking the top of the active priority queue. If the active
priority queue is empty, and the pending priority queue is not, then the active and pending
queues are swapped with the task being taken from the top of the “new” active queue.

Since the queries are being run by a separate DBMS instance of which there is little control
over how it goes about running queries, the worker can only control when queries are sent to
the DBMS and also lock files in memory. Files in memory are among the most likely items to
be paged out when memory resources are low, which would increase disk I/O. Locking files
in memory prevents this from happening. However, care must taken in choosing how much
memory can be used for locking files. Use too much and there will be a significant impact
on DBMS performance. Set aside too little, and schedulers will not make optimum use of
the resources available and may be forced to run tasks without actually locking the files in
memory.

The memory manager controls which files are locked in memory. When a scheduler tries to
run a task, the task asks the memory manager to lock all the shared scan tables it needs.
The memory manager determines which files are associated with the tables. If the files are
already locked in memory and there is enough memory available to lock the files which are

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

35

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

not already locked, the task is given a handle and allowed to run. When the task completes,
it hands the handle back to the memory manager. If it was the last task using any particular
table, the memory for the files used by that table is freed.

When the memory manager locks a file, it does not read the file. It only sets aside memory
for the file to occupy when it is read by the DBMS. In the special case where a task can run
even though there is not enough memory available, those tables that cannot fit are put on a
list of reserved tables and their size is subtracted from the quota until they can be locked or
freed. When memory is freed, the memory manager will try to lock the reserved tables.

Because Qserv processes interactive, short queries concurrently with scanning queries, its
query scheduler should be able to allow for those queries to complete without waiting for
a query scan. To achieve this, Qserv worker nodes choose between the scan scheduler de-
scribed above and a simpler grouping scheduler. Incoming queries with identified scan tables
are admitted to the scan scheduler, and all other queries are admitted to the grouping sched-
uler. The grouping scheduler is a simple scheduler that is a simple variant of a plain FIFO
(first-in-first-out) scheduler. Like a FIFO scheduler, it maintains a queue of queries to exe-
cute, and operates identically to a FIFO scheduler with one exception – queries are grouped
by chunk id. Each incoming query is inserted into the queue behind another query on the
same chunk, and at the back if no queued query matches. The grouping scheduler assumes
that the queue will never get very long, because it is intended to only handle short interactive
queries lasting fractions of seconds, but groups its queue according to chunk id in order to
provide aminimal amount of access locality to improve throughput at a limited cost to latency.
Some longer queries will be admitted to the grouping scheduler even though they are scan-
ning queries, provided that they have been determined to only scan a single chunk. Although
these non-shared scan query will disrupt performance of the overall scan on the particular
disk on a worker, the impact is thought to be small because each of these represents all (or
a large fraction of) the work for a single user query, and the impact is amortized among all
disks on all workers.

For discussion about the performance of the current implementation, refer to DMTR-16.

5.10.3 Memory management

To minimize system paging when multiple threads are scanning the same table, we imple-
mented a memory manager called memman. When a shared scan is about to commence,
the shared scan scheduler informs memman about the tables the query will be using and

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

36

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

how important it is to keep those tables in memory during the course of the query. When
directed to keep the tables in memory, memman opens each data base table file, maps it into
memory, and then locks the pages to prevent the kernel from stealing the pages for other
uses. Thus, once a file page is faulted in, it stays in memory and allows other threads to scan
the contents of the page without incurring additional page faults. Once the shared scan of
the table completes, memman is told that the tables no longer need to remain in memory.
memman frees up the pages by unlocking them and deleting the mapping.

This type of management is necessary to satisfy system paging requirements because the
prime paging pool is the set of unlocked file system pages.

5.10.4 XRootD scheduling support

When the front-end dispatches a query, XRootD normally picks the least used server in an
attempt to spread the load across all of the nodes holding the required table. While this works
well for interactive queries, it is hardly ideal for shared scan queries. In order to optimize
memory and I/O usage, queries for the same table in a shared scan should all be targeted
to the same node. A new scheduling mode was added to the XRootD cmsd called affinity
scheduling. The front-end can tell XRootD whether or not a particular query has affinity to
other queries using the same table. Queries that have affinity are always sent to the same
node relative to the table they will be using. This allows the back-end scheduler to minimize
paging by running themaximumnumber of queries against the same table in parallel. Should
that node fail, XRootD assigns another working node that has the table as the target node for
queries that have affinity.

5.10.5 Multiple tables support

Handling multiple tables in shared scans requires an additional level of management. The
scheduler will aim to satisfy a throughput yielding average scan latencies as follows:

• Object queries: 1 hour

• Object, Source queries (join): 12 hours

• Object, ForcedSource queries (join): 12 hours

• Object_Extras6 queries (join): 8 hours.
6This includes all Object-related tables, e.g., Object_Extra, Object_Periodic, Object_NonPeriodic, Object_APMean

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

37

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

There are separate schedulers for queries that are expected to take one hour, eight hours, or
twelve hours. The schedulers group the tasks by chunk id and then the highest scan rating of
the all tables in the task. The scan ratings are meant to be unique per table and indicative of
the size of the table, so this sorting places scans using the largest table from the same chunk
next to each other in the queue. Using scan rating allows flexibility to work with data sets with
schemas different than that of LSST.

Since scans are not limited to specific tables, complicated joins could occur in user queries
that could takemore than twelve hours to process. The worker monitors query progress, and
if particular queries appear to be too slow for their current scheduler, they are removed and
placed on a dedicated ”snail scan” so the rest of the queries on the original scheduler are not
overly delayed.

5.11 Level 3: User Tables, External Data

Level 3 tables including tables generated by users, and data catalogs brought from outside,
depending on their type and size, will be either partitioned and distributed across the pro-
duction database servers, or kept unpartitioned in one central location. While the partitioned
and distributed Level 3 data will share the nodes with Level 2 data, it will be kept on dedicated
disks, independent from the disks serving Level 2 data. This will simplify maintenance and
recoverability from failures.

Level 3 tables will be tracked and managed through the Qserv Metadata System (qms), de-
scribed in Section 5.9. This includes both the static, as well as the dynamic metadata.

5.12 Cluster and Task Management

Qserv delegates management of cluster nodes to XRootD. The XRootD systemmanages clus-
termembership, node registration/deregistration, address lookup, replication, and communi-
cation. Its Scalable Service Interface (SSI) API provides data-addressed communication chan-
nels to the rest of Qserv, hiding details like node count, the mapping of data to nodes, the
existence of replicas, and node failure. The Qserv master focuses on dispatching queries to
endpoints and Qserv workers focus on receiving and executing queries on their local data.

Cluster management performed outside of XRootD does not directly affect query execution,
but includes coordinating data distribution, data loading, and node arrival/departure, and is
discussed in Section 5.15. The SSI API includes methods that allow dynamic updates to the

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

38

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

data view of an XRootD cluster so that when new tables appear or disappear, the XRootD
system can incorporate that information for future scheduling decisions. Thus, clusters can
dynamically change without the need to restart the XRootD system.

5.13 Fault Tolerance

Qserv approaches fault tolerance in several ways. The design exploits the immutability of the
underlying data by replicating and distributing data chunks across a cluster such that in the
event of a node failure, the problem can be isolated and all subsequent queries re-routed
to nodes maintaining duplicate data. Moreover, this architecture is fundamental to Qserv’s
incremental scalability and parallel performance. Within individual nodes, Qserv is highly
modularized with minimal interdependence among its components, which are connected via
narrow interfaces. Finally, individual components contain specialized logic for minimizing,
handling, and recovering from errors.

The components that comprise Qserv include features that independently provide failure-
prevention and failure-recovery capabilities. The MySQL proxy is designed to balance its load
among several underlyingMySQL servers and provide automatic fail-over in the event a server
fails. The XRootD systemprovidesmultiplemanagers and highly redundant servers to provide
high bandwidth, contendwith high request rates, and copewith unreliable hardware. And the
Qservmaster itself contains logic that works in conjunctionwith XRootD to isolate and recover
from worker-level failures.

A worker-level failure denotes any failure mode that can be confined to one or more worker
nodes. In principle, all such failures are recoverable given the problem nodes are identified
and alternative nodes containing duplicate data are available. Examples of such failures in-
clude a disk failure, a worker process or machine crashing, or network problems that render
a worker unreachable.

Consider the event of a disk failure. Qserv’s worker logic is not equipped to manage such a
failure on localized regions of disk and would behave as if a software fault had occurred. The
worker process would therefore crash and all chunk queries belonging to that worker would
be lost. The in-flight queries on its localmysqldwould be cleanedup andhave resources freed.
The Qserv master’s requests to retrieve these chunk queries via XRootD would then return an
error code. The master responds by re-initializing the chunk queries and re-submits them to
XRootD. Ideally, duplicate data associated with the chunk queries exists on other nodes. In
this case, XRootD silently re-routes the request(s) to the surviving node(s) and all associated

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

39

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

queries are completed as usual. In the event that duplicate data does not exist for one ormore
chunk queries, XRootD would again return an error code. The master will re-initialize and re-
submit a chunk query a fixed number of times (determined by a parameter within Qserv)
before giving up, logging information about the failure, and returning an error message to
the user in response to the associated query.

Error handling in the event that an arbitrary hardware or software bug (perhaps within the
Qserv worker itself) causes a worker process or machine to crash proceeds in the same man-
ner described above. The same is true in the event that network loss or transient sluggish-
ness/overload has the limited effect of preventing XRootD from communicating with one or
more worker nodes. As long as such failures are limited to a finite number of workers and do
not extend to the Qserv master node, XRootD is designed to record the failure and return an
error code. Moreover, if duplicate data exists on other nodes, this will be registered within
XRootD, which will successfully route any subsequent chunk queries.

In the event of an unrecoverable error, the Qserv master is equipped with a status/error mes-
sagingmechanism designed to both log detailed information about the failure and to return a
human-readable errormessage to the user. Thismechanism includes C++ exception handling
logic that encapsulates all of themaster’s interactionswith XRootD. If an unrecoverable excep-
tion occurs, the master gracefully terminates the query, frees associated resources, logs the
event, and notifies the user. Qserv’s internal status/error messaging system also generates
a status message and timestamp each time an individual chunk query achieves a milestone.
Such milestones include: chunk query dispatch, written to XRootD, results read from XRootD,
results merged, and query finalized. This real-time status information provides useful context
in the event of an unrecoverable error.

Building upon the existing fault-tolerance and error handling features described above, future
work includes introducing a heartbeatmechanismonworker nodes that periodically pings the
worker process and will restart it in the event it becomes unresponsive. Similarly, a master
monitoring process could periodically ping worker nodes and restart a workermachine if nec-
essary. We are also considering managing failure at a per-disk level, but this would require
research since application-level treatment of disk failure is relatively rare. It should also be
possible to develop an interface for checking the real-time status of queries currently being
processed by Qserv by leveraging its internally used status/error messaging mechanism.

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

40

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

5.14 Next-to-database Processing

We expect some data analyses will be very difficult, or even impossible to express through
SQL language. This might be particularly useful for time-series analysis. For this type of anal-
yses, we will allow users to execute their analysis algorithms in a procedural language, such
as Python. To do that, we will allow users to run their own code on their own hardware re-
sources co-located with production database servers. Users then run queries on the produc-
tion database which stream rows directly from database cluster nodes to the user processing
cluster, where arbitrary code may run without endangering the production database. This
allows their incurred database I/O needs to be satisfied using the database system’s shared
scanning infrastructure while providing the full flexibility of running arbitrary code.

5.15 Administration

5.15.1 Installation

Qserv as a service requires a number of components that all need to be running, and con-
figured together. On the master node we require mysqld, mysql-proxy, XRootD, cmsd, Qserv
metadata service, and the Qserv master process. On each of the worker nodes there will also
be the mysqld, cmsd, and XRootD service. These major components come from the MySQL,
XRootD, andQserv distributions. But to get these towork togetherwe also requiremanymore
software package, such as protobuf, Lua, expat, libevent, python, zope, boost, Java, antlr, and
so on. And many of these require more recent versions than are provided in most system
distributions.

To manage both the complexity of deployment and the diversity of possible installation en-
vironments, we have adopted the use of Linux containers via Docker. Service binaries and
their user-space dependencies are bundled within containers which can then be deployed
uniformly to any host running Docker with a recent enough Linux kernel, regardless of oper-
ating system distribution, package profile, patch levels, etc.

We have experimented with several container orchestration technologies during develop-
ment. Of these, Kubernetes seems to be emerging as a clear leader, and is our current or-
chestration solution of choice.

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

41

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

5.15.2 Data loading

As previously mentioned, Data Release Production will not write directly to the database.
Instead, the DRP pipelines will produce binary FITS tables and image files that are reliably
archived as they are produced. Data will be loaded into Qserv in bulk for every table, so that
tables are either not available, or complete and immutable from the user query access per-
spective.

For replicated tables, these FITS files are converted to CSV (e.g. by harvesting FITS image
header keyword value pairs, or by translating binary tables to ASCII), and the resulting CSV
files are loadeddirectly intoMySQL and indexed. For partitioned tables likeObject and Source,
FITS tables are fed to the Qserv partitioner, which assigns partitions based on sky coordinates
and converts to CSV.

In particular, the partitioner divides the celestial sphere into latitude angle “stripes” of fixed
height H. For each stripe, a width W is computed such that any two points in the stripe with
longitudes separated by at least W have angular separation of at least H. The stripe is then
broken into an integral number of chunks of width at least W, so that each stripe contains
a varying number of chunks (e.g. polar stripes will contain just a single chunk). Chunk area
varies by a factor of about pi over the sphere. The same procedure is used to obtain sub-
chunks: each stripe is broken into a configurable number of equal-height “substripes”, and
each substripe is broken into equal-width subchunks. This scheme is preferred over the Hi-
erarchical Triangular Mesh for its speed (no trigonometry is required to locate the partition
of a point given in spherical coordinates), simplicity of implementation, and the relatively fine
control it offers over the area of chunks and sub-chunks.

The boundaries of subchunks constructed as described are boxes in longitude and latitude -
the overlap region for a subchunk is defined as the spherical box containing all points outside
the subchunk but within the overlap radius of its boundary.

The task of the partitioner is to find the IDs of the chunk and subchunk containing the par-
titioning position of each row, and to store each row in the output CSV file corresponding to
its chunk. If the partitioning parameters include overlap, then the row’s partitioning position
might additionally fall inside the overlap regions of one or more subchunks. In this case, a
copy of the row is stored for each such subchunk (in overlap CSV files).

Tables that are partitioned in Qserv must be partitioned identically within a Qserv database.

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

42

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

This means that chunk tables in a database share identical partition boundaries and identical
mappings of chunk id to spatial partition. In order to facilitate table joining, a single table’s
columns are chosen to define the partitioning space and all partitioned tables (within a re-
lated set of tables) are either partitioned according that pair of columns, or not partitioned
at all. Our current plan chooses the Object table’s ra_PS and decl_PS columns, meaning that
rows in the Source and ForcedSource tables will be partitioned according to the Objects they
reference.

There is one exception: we allow for precomputed spatial match tables. As an example, such
a table might provide a many-to-many relationship between the LSST Object catalog and a
reference catalog from another survey, listing all pairs of LSST Objects and reference objects
separated by less than some fixed angle. The reference catalog cannot be partitioned by
associated Object, as more than one Object might be matched to a reference object. Instead,
the reference catalogmust be partitioned by reference object position. This means that a row
in the match table might refer to an Object and reference object assigned to different chunks
stored on different Qserv worker nodes.

We avoid this complication by again exploiting overlap. Wemandate (and verify at partitioning
time) that no match pair is separated by more than the overlap radius. When partitioning
match tables, we store a copy of eachmatch in the chunk of both positions referenced by that
match. When joiningObjects to reference objects via thematch table then, we are guaranteed
to find all matches toObjects in chunk C by joiningwith all match records in C and all reference
objects in C or in the overlap region of C.

All Qserv worker nodes will partition subsets of the pipeline output files in parallel – we ex-
pect partitioning to achieve similar aggregate I/O rates to those of full table scans for user
query access, so that partitioning should complete in a low factor (2-3x) of the table scan
time. Once it does, each Qserv worker will gather all output CSV files for its chunks and load
them into MySQL. The structure of the resulting chunk tables is then optimized to maximize
performance of user query access (chunk tables will likely be sorted, and will certainly be
compressed), and appropriate indexes are built. Since chunks are sized to fit in memory, all
of these steps can be performed using an in-memory file-system. I/O costs are incurred only
when reading the CSV files during the load and when copying finalized tables (i.e. .MYD/.MYI
files) to local disk.

The last phase of data loading is to replicate each chunk to one other Qserv worker node. We
will rely on table checksum verification rather than a majority rule to determine whether a

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

43

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

replica is corrupt or not.

The partitioner has been prototyped as a multi-threaded C++ program. It uses an in-memory
map-reduce implementation internally to scale across cores, and can read blocks of one or
more input CSV files in parallel. It does not currently understand FITS table files. CSV filewrites
are also parallelized - each output chunk is processed by a single reducer thread and can be
written to in parallel with no application level locking. In preliminary testing, our partitioner
was able to sustain several hundredMB/s of both read and write bandwidth when processing
a CSV dump of the PT1.2 Source table.

We are investigating a pair of data loading optimizations. One is to have pipeline processes
either integrate the partitioning code or feed data directly to the partitioner, rather than com-
municating via persistent storage. The other is to write out tables in the native database
format (e.g. as .MYD files, ideally using the MySQL/MariaDB server code to do so), allowing
the CSV database loading step to be bypassed.

5.15.3 Administrative scripts

The Qserv design originally had a somewhat complicated set of custom scripts and tools used
to coordinate and sequence service launch and shutdown on a cluster, to monitor and report
on service status, to automatically relaunch failed services, and to coordinate rolling software
upgrades out onto a cluster. We have recently found that all of these needs are directlymet by
container orchestration frameworks such as Kubernetes, and sowe are currently in to process
of removing this now-redundant tooling in order to simplify and standardize the design.

Data ingest still tends to be a slightly detailed process, beyond just data preparation. Up
to now, data preparation produces text files in CSV format which are then loaded into the
MySQL layer as a MyISAM table. The schema for these tables then needs to be elaborated in
places with columns for chunk and subchunk number. Loading is done with index-creation
suspended, and indices and table statistics for the query planner need to be explicitly gener-
ated on each worker after the load. Additionally, a list of chunks on the sky for which no data
has been loaded must be generated to aid in efficient query dispatch. All of these activities
are currently coordinated by a Python qserv-loader script.

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

44

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

5.16 Current Status and Future Plans

As of now (July 2017) we have implemented a basic version of Qserv end-to-end, andmaintain
three running instances at a scale of approximately 30 physical nodes each in continuous
operation on dedicated hardware clusters at NCSA and CC-IN2P3.

The system has been demonstrated to correctly distribute and execute both low and high
volume queries, including small-area cone and object searches, region restricted queries, and
full table scans including large-area near-neighbor searches. Analytic queries involving SciSQL
UDFs in both filter and aggregation clauses have also been demonstrated.

Scale testing has been successfully conducted 7 on the above-mentioned clusterswith datasets
of up to approximately 70 TB, and we expect to cross the 100 TB mark as tests continue in
2017. To date the system is on track through a series of graduated data-challenge style tests
[LDM-552] tomeet or exceed the stated performance requirements for the project [LDM-555].

The shared-scan implementation is substantially complete, and functions per design to enable
high levels of concurrency without degraded full-scan query performance.

The metadata system, as described above, for both static and dynamic metadata is in place,
and basic query management facilities (query cancellation and monitoring) have been imple-
mented.

The system includes a comprehensive set of unit and regression tests that are integrated with
the build and CI systems.

In addition to background ongoing effort to improve query performance and extend query
coverage, implementation work ahead includes:

• automatic data distribution and replication;

• improved query management and monitoring tools;

• demonstrating cross-match with external catalogs;

• implementing support for Level 3 data;

• next-to-data processing framework;
7See Qserv test reports DMTR-21, DMTR-12, DMTR-13, and DMTR-16 (most recent).

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

45

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

• improvements to administration procedures and scripts;

• authentication and authorization;

• resource management;

• security;

• early engagement with astronomy users.

Automatic data distribution and replication. We have experimented successfully with
static replication of data at ingest time, but for production a system which will automatically
place data and dynamically respond dynamically to node arrivals and departures will be re-
quired. This is currently under active development.

Improved query management and monitoring tools. The facility to enable clients to tem-
porarily disconnect from long-running queries and later rendezvous to check query progress
and/or collect results is currently under active development. Facilities to return partial results
and estimate completion times and data sizes for long-running queries remain to be imple-
mented.

Demonstrating cross-match with external catalogs. One of the use cases involves cross
matching with external catalogs. In cases where the catalog to cross-match with is small, it
will be replicated. For cross-matching with larger catalogs, the catalog to be cross-matched
with will need to be partitioned and distributed to the worker nodes.

Implementing support for Level 3 data. Users should be able to maintain their own tables
to store their own data or results from previous queries. They should be able to create, drop,
and replace their own tables within the system.

Next to data processing framework. A facility to stream query results to dedicated nodes
where user-submitted code can run against those streams has yet to be implemented.

Improvements to administration procedures and scripts. To further automate common
tasks related to database management, table management, partition management, data dis-
tribution, and others we need to implement various improvements to our administration pro-
cedures and scripts.

Authentication and authorization. A production database system should provide some

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

46

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

facility for user or role-based access so that usage can be controlled and resources can be
shared. This is in particular needed for Level-3 data products.

Resource management. A production system should have some way to manage/restrict
resource usage and provide quality-of-service controls. This includes a monitoring facility
that can track each node’s load and per-user-query resource usage.

Security. The system needs to be secure and resilient against denial of service attacks.

Early engagement with astronomy users. It is important that we engage early enough
members of our target user-community, so we can have time to on their feedback about what
we are building. Does the system have the capabilities they need and expect? Is the query
syntax usable and practical for them? We have begun some work in this area through activi-
ties in the PDAC (Prototype Data Access Center) cluster at NCSA with a very limited audience,
and plan to expand that audience in upcoming months.

5.17 Open Issues

What follows is a (non-exhaustive) list of issues, technical and scientific, that are still being
discussed and where changes are possible.

• Row updates. Currently, all rows once ingested into a Qserv instance are treated as
immutable, and row updates are not supported. This simplification of design is possible
because the motivating use case for Qserv (annually released, authoritative, LSST cata-
logs) is primarily read-only. The apparent need for update of Level 3 products within a
Qserv instance can beworked around by treating Level 3 products as immutable once in-
gested; should changes to a Level 3 product be required, that product would be dropped
and re-ingested/regenerated rather than updated in place. If it were deemed neces-
sary that Qserv support row updates and/or transactions directly, some considerable
changes to the Qserv architecture would likely be required.

• Very large objects. Some objects (e.g. large galaxies) are much larger than our overlap
region; in some cases their footprint will spanmultiple chunks. Currently we areworking
with the object center, neglecting the actual footprint. While there are some science use
cases that would benefit from a system that tracks objects based on their footprint, this
is currently not a requirement. A potential solution would involve adding a custom index
similar to the r-tree-based indexes such as the TOUCH [15].

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

47

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

• Very large results. Currently, the front-end that dispatches a query is also responsi-
ble for assembling its eventual results. In general, this is not a scalable approach as
the resources required to processes the results may be several orders of magnitude
greater than those needed to dispatch the query. One potential solution is to replicate
the front-end to the extent necessary to handle query results. Alternatively, the XRootD
SSI interface could be augmented to itself allow running disconnected queries. That is,
once a particular front-end dispatches a query it can get a handle to that query and dis-
connect from it. A different server could, using that handle, reconnect to the query and
process the results. This would be a more flexible model as it would allows indepen-
dent scaling of query dispatch and result processing. It would also have the benefit of
not requiring cancellation of in-progress queries dispatched from a particular front-end
should that front-end die.

• Sub-queries. Qserv does not currently support SQL sub-queries. Since there is evidence
that such a capability might be useful to users, we should formulate a few possible de-
signs and understand how easy/difficult they might be to implement. Some potential
approaches here might be to split sub-queries into multiple queries and/or use session
variables. A naïve implementation that involves dumping all sub-query results to disk
and then rereading them, similar to a multi-stage map/reduce, should also be tractable.

6 Risk Analysis

6.1 Potential Key Risks

Insufficient database performance and scalability is one of themajor statedmajor risks for
DM [Document-7025].

Qserv as an implementation of the baseline architecture meeting the requirements refer-
enced above is already well on its way, and is currently resourced and scheduled for comple-
tion on time and within budget.

A viable alternative might be to use an off-the-shelf system. In fact, an off-the-shelf solution
could present significant support cost advantages over a production-ready Qserv, especially if
it is a systemwell supported by a large user and developer community. It is likely that an open
source, scalable solution will be available on the time scale needed by LSST (for the beginning
of production scalability approaching few hundred terabytes would be sufficient). Database
systems larger than the largest single LSST data set have been successfully demonstrated in

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

48

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

production today. There is a growing demand for large scale systems and growing compe-
tition in that area (Hadoop, Greenplum, InfiniDB, MonetDB, Caché and others). Greenplum,
which was a closed-source project at the outset of LSST, is now available as open-source.

Finally, a third alternative would be to use a closed-source, non free software, such as Caché
or InfiniDB (Teradata is too expensive). Some of these systems are very reasonably priced. We
believe the largest barrier preventing us from using an off-the-shelf DBMS such as InfiniDB is
poorly developed spherical geometry and spherical partitioning support.

Potential problems with off-the-shelf database software used, such as MySQL is another
potential risk. MySQL has recently been purchased by Oracle, leading to doubts as to whether
the MySQL project will be sufficiently supported in the long-term. Since the purchase, several
independent forks of MySQL software have emerged, including MariaDB (supported by one
of the MySQL founders) and Percona. Should MySQL disappear, these open-source, MySQL-
compatible systems are a solid alternative. Should we need to migrate to a different DBMS,
we have taken multiple measures to minimize the impact:

• our schema does not contain any MySQL-specific elements and we have successfully
demonstrated using it in other systems such as MonetDB;

• we do not rely on any MySQL specific extensions, with the exception of MySQL Proxy,
which can be made to work with non-MySQL systems if needed;

• weminimize the use of stored functions and stored procedures which tend to be DBMS-
specific, and instead use user defined functions, which are easier to port (only the inter-
face binding part needs to be migrated).

Complex data analysis. The most complex analysis we identified so far include spatial and
temporal correlations which exhibit 𝑂(𝑛2) performance characteristics, searching for anoma-
lies and rare events, as well as searching for unknown are a risk as well – in most cases in-
dustrial users deal with much simpler, well defined access patterns. Also, some analysis will
be ad-hoc, and access patterns might be different than these we are anticipating. Recently,
large-scale industrial users have started to express strong need for similar types of analyses;
understanding and correlating user behavior (time-series of user clicks) run by web compa-
nies, searching for abnormal user behavior to detect fraud activities run by banks and web
companies, analyzing genome sequencing data run by biotech companies, and what-if mar-
ket analysis run by financial companies are just a few examples. Typically these analyses are

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

49

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

ad-hoc and involve searching for unknowns, similar to scientific analyses. As the demand
(by rich, industrial users) for this type of complex analyses grows, the solution providers are
rapidly starting to add needed features into their systems.

The complete list of all database-related risks maintained in the LSST risk registry:

• DM-014: Database performance insufficient for planned load

• DM-015: Unexpected database access patterns from science users

• DM-016: Unexpected database access patterns from DM productions

• DM-032: LSST DM hardware architecture becomes antiquated

• DM-060: Dependencies on external software packages

• DM-061: Provenance capture inadequate

• DM-065: LSST DM software architecture incompatible with de facto community stan-
dards

• DM-070: Archive sizing inadequate

• DM-074: LSST DM software architecture becomes antiquated

• DM-075: New SRD requirements require new DM functionality

6.2 Risk Mitigations

To mitigate the insufficient performance/scalability risk, we developed Qserv, and demon-
strated scalability and performance. In addition, to increase chances an equivalent open-
source, community supported, off-the-shelf database systembecomes availablewehave closely
collaboratedwith theMonetDB open source columnar database team – building on our Qserv
lessons-learned, they are trying to addmissing features and turn their software into a system
capable of supporting LSST needs. Further, to stay current with the state-of-the-art in petas-
cale data management and analysis, we continue a dialog with all relevant solution providers,
both DBMS and Map/Reduce, as well as with data-intensive users, both industrial and scien-
tific, through the XLDB conference and workshop series we lead, and beyond.

To understand query complexity and expected access patterns, we are working with LSST
Science Collaborations and the LSST Science Council to understand the expected query load

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

50

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

andquery complexity. Wehave compiled a set of commonqueries [5] anddistilled this set into
a smaller set of representative queries we use for various scalability tests – this set represents
each major query type, ranging from trivial low volume, to complex correlations [2]. We have
also talked to scientists and database developers from other astronomical surveys, including
SDSS, 2MASS, Gaia, DES, LOFAR and Pan-STARRS.

To deal with unpredictability of analysis, we will use shared scans. With shared scans, users
will have access to all the data, all the columns, even these very infrequently used, at a pre-
dictable cost – with shared scans increasing complexity does not increase the expensive disk
I/O needs, it only increases the CPU needs.

To keep query load under control, we will employ throttling to limit individual query loads.

7 References

[1] [DMTR-12], Becla, J., 2013, Qserv 300 node test, DMTR-12, URL https://ls.st/DMTR-12

[2] Becla, J., 2013, Queries Used for Scalability & Performance Tests, URL https://dev.

lsstcorp.org/trac/wiki/db/queries/ForPerfTest

[3] [DMTR-13], Becla, J., 2015, Qserv Summer 15 Large Scale Tests, DMTR-13, URL https:

//ls.st/DMTR-13

[4] [LDM-555], Becla, J., 2017, Data Management Database Requirements, LDM-555, URL
https://ls.st/LDM-555

[5] Becla, J., Lim, K.T., 2013, Common Queries, URL https://dev.lsstcorp.org/trac/wiki/

db/queries

[6] [LDM-141], Becla, J., Lim, K.T., 2013, DataManagement Storage Sizing and I/OModel, LDM-
141, URL https://ls.st/LDM-141

[7] Becla, J., Lim, K.T., Monkewitz, S., Nieto-Santisteban, M., Thakar, A., 2008, In: Argyle, R.W.,
Bunclark, P.S., Lewis, J.R. (eds.) Astronomical Data Analysis Software and Systems XVII,
vol. 394 of Astronomical Society of the Pacific Conference Series, 114, ADS Link

[8] [DMTN-048], Becla, J., Lim, K.T., Wang, D., 2011, Qserv design prototyping experiments,

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

51

https://ls.st/DMTR-12
https://dev.lsstcorp.org/trac/wiki/db/queries/ForPerfTest
https://dev.lsstcorp.org/trac/wiki/db/queries/ForPerfTest
https://ls.st/DMTR-13
https://ls.st/DMTR-13
https://ls.st/LDM-555
https://dev.lsstcorp.org/trac/wiki/db/queries
https://dev.lsstcorp.org/trac/wiki/db/queries
https://ls.st/LDM-141
http://adsabs.harvard.edu/abs/2008ASPC..394..114B

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-07

DMTN-048, URL https://dmtn-048.lsst.io,
LSST Data Management Technical Note

[9] [DMTN-046], Becla, J., Lim, K.T., Wang, D., 2013, An investigation of database technologies,
DMTN-046, URL https://dmtn-046.lsst.io,
LSST Data Management Technical Note

[10] [DMTR-21], Becla, J., Lim, K.T., Wang, D., 2013, Early (pre-2013) Large-Scale Qserv Tests,
DMTR-21, URL https://ls.st/DMTR-21

[11] Dorigo, A., Elmer, P., Furano, F., Hanushevsky, A., 2005, WSEAS Transactions on Comput-
ers, 4, 348, URL http://xrootd.org/presentations/xpaper3_cut_journal.pdf

[12] [LSE-163], Jurić, M., et al., 2017, LSST Data Products Definition Document, LSE-163, URL
https://ls.st/LSE-163

[13] [Document-7025], Kantor, J., Krabbendam, V., 2011, DM Risk Register, Document-7025,
URL https://ls.st/Document-7025

[14] [LDM-552], Mueller, F., 2017, Qserv Software Test Specification, LDM-552, URL https:

//ls.st/LDM-552

[15] Nobari, S., Tauheed, F., Heinis, T., et al., 2013, In: Proceedings of the 2013 ACM SIG-
MOD International Conference on Management of Data, SIGMOD ’13, 701–712, ACM,
New York, NY, USA, doi:10.1145/2463676.2463700

[16] [DMTR-16], Thukral, V., 2017, Qserv Fall 16 Large Scale Tests/KPMs, DMTR-16, URL https:
//ls.st/DMTR-16

[17] [DMTN-047], Tommaney, J., Becla, J., Lim, K.T., Wang, D., 2011, Tests with InfiniDB, DMTN-
047, URL https://dmtn-047.lsst.io,
LSST Data Management Technical Note

The contents of this document are subject to configuration control by the LSST DM Technical Control
Team.

52

https://dmtn-048.lsst.io
https://dmtn-046.lsst.io
https://ls.st/DMTR-21
http://xrootd.org/presentations/xpaper3_cut_journal.pdf
https://ls.st/LSE-163
https://ls.st/Document-7025
https://ls.st/LDM-552
https://ls.st/LDM-552
http://doi.org/10.1145/2463676.2463700
https://ls.st/DMTR-16
https://ls.st/DMTR-16
https://dmtn-047.lsst.io

	Executive Summary
	Introduction
	Requirements
	General Requirements
	Data Production Related Requirements
	Query Access Related Requirements
	Discussion
	Design Considerations
	Query complexity and access patterns

	Baseline Architecture
	Alert Production and Up-to-date Catalog
	Data Release Production
	User Query Access
	Distributed and parallel
	Shared-nothing
	Indexing
	Shared scanning
	Clustering
	Partitioning
	Long-running queries
	Technology choice

	Implementation (Qserv)
	Components
	MySQL
	XRootD

	Partitioning
	Query Generation
	Processing modules
	Processing module overview

	Dispatch
	Wire protocol
	Frontend
	Worker

	Threading Model
	Aggregation
	Indexing
	Secondary Index Structure
	Secondary Index Loading

	Data Distribution
	Database data distribution
	Failure and integrity maintenance

	Metadata
	Static metadata
	Dynamic metadata
	Architecture
	Typical Data Flow

	Shared Scans
	Background
	Implementation
	Memory management
	XRootD scheduling support
	Multiple tables support

	Level 3: User Tables, External Data
	Cluster and Task Management
	Fault Tolerance
	Next-to-database Processing
	Administration
	Installation
	Data loading
	Administrative scripts

	Current Status and Future Plans
	Open Issues

	Risk Analysis
	Potential Key Risks
	Risk Mitigations

	References

