Rl
N

LARGE SYNOPTIC SURVEY TELESCOPE

Large Synoptic Survey Telescope (LSST)

Data Management Database Design

Jacek Becla, Daniel Wang, Serge Monkewitz, K-T Lim, John Gates,
Andy Salnikov, Andrew Hanushevsky, Douglas Smith, Bill Chickering,
Michael Kelsey, and Fritz Mueller

LDM-135

Latest Revision: 2017-07-06

Draft Revision NOT YET Approved - This LSST document has been approved as a Content-Controlled
Document by the LSST DM Technical Control Team. If this document is changed or superseded,
the new document will retain the Handle designation shown above. The control is on the most
recent digital document with this Handle in the LSST digital archive and not printed versions.

Additional information may be found in the corresponding DM RFC. - Draft Revision NOT YET

Approved

Abstract

This document discusses the LSST database system architecture.




[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Change Record

Data Management Database Design LDM-135

Latest Revision 2017-07-06

Version | Date Description Owner name
1.0 2009-06-15 Initial version. Jacek Becla
2.0 2011-07-12 Most sections rewritten, added scalability test | Jacek Becla
section
2.1 2011-08-12 Refreshed future-plans and schedule of test- | Jacek Becla, Daniel
ing sections, added section about fault toler- | Wang
ance.
3.0 2013-08-02 Synchronized with latest changes to the re- | Jacek Becla, Daniel
quirements (LSE-163). Rewrote most of the | Wang, Serge Monke-
“Implementation” chapter. Documented new | witz, Kian-Tat Lim,
tests, refreshed all other chapters. Douglas Smith, Bill
Chickering
3.1 2013-10-10 Refreshed numbers based on latest LDM-141. | Jacek Becla, Daniel
Updated shared scans (implementation) and | Wang
300-node test sections, added section about
shared scans demonstration
3.2 2013-10-10 TCT approved R Allsman
2016-07-18 Update with async query, shared scan, sec- | John Gates, Andy
ondary index, xrootd, metadata service infor- | Salnikov, Andrew
mation. Hanushevsky, Michael
Kelsey, Fritz Mueller
2017-07-05 Move historical investigations to separate | T.Jenness
documents.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the

LSST DM Technical Control Team. - DRAFT NOT YET APPROVED



LARGE SYNOPTIC SURVEY TELESCOPE

[S57T

Data Management Database Design LDM-135 Latest Revision 2017-07-06
Contents
1 Executive Summary 1
2 Introduction 3

B Baseline Architecture 3
B.1 Alert Production and Up-to-date Catalog . . . . . . . . . v v v oo i 3
B.2 DataRelease Production . . . . . . .ov v 7
B.3 USEr QUEIY ACCESS . o v v o o e e e e e e e e e 7

B.3.1 Distributed and parallel . . . ... ... ... ... 7
B.3.2 Shared-nothing . . . . ... ... 7
B.3.3 INAeXiNg . . o o o 8
B.3.4 Sharedscanning . . . . . . .o i 9
B.3.5 Clustering . . . . . e 10
B.3.6 Partitioning . . . . . . ..ot 10
B.3.7 LONG-TUNNINE QUEIIES « « « v v v e e e e e e e e e e e e e e e e 13
B.3.8 Technology ChOiCE . . . . o v o o e e 13

4 Requirements 14
4.1 General ReQUIFEMENTS . . . v v v v e e e e 14
4.2 Data Production Related Requirements . . . . . . ... ..., 15
4.3 Query Access Related Requirements . . . . . . oo v v i 15
A DISCUSSION « o o o e e e e e e e e e e e 18

A1 Implications . . . o o 18
4.4.2 Query complexity and access patterng . . . . . ..o 18

5 Design Trade-offs 19

5.1 Standalone TeStS . . . v v v v e e e e 19
5.1.1 Spatial join performance . . . . . . ... ... 19
5.1.2 Building sub-partitions . . . . . v vt e 20
5.1.3 Sub-partitionoverhead . . . . . . . .. 20

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Dota Management Database Devan Lo 135 Lovest Revision 2017.07.06
5.1.4 Avoiding materializing sub-partitions . . . . . . .. ... 21
5.1.5 Billion row table / reference catalog . . . ... . ... ........... 21
5.1.6 COMPression . . . . v v v v e e e e e e 22
5.1.7 Fulltable scan performance . . . . . . . . oo ot 22
5.1.8 Low-volume queried . . . . .. .o 22
5.1.9 Solidstate diskg . . .« v oot 23

5.2 Data Challenge Related Testy . . . . .o v v v oo i e 24
521 DC1:dataingest . . . o v v v v e e 24
5.2.2 DC2: source/object association . . . . . v v v 25
5.2.3 DC3: catalog construction . . . . . .. oo 25

5.2.4 Winter-2013 Data Challenge: querying database for forced photometryf 25
5.2.5 Winter-2013 Data Challenge: partitioning 2.6 TB table for Qsery . ... 25

5.2.6 Winter-2013 Data Challenge: multi-billion-row table. . . . . . ... ... 26

6 Risk Analysis 26
6.1 Potential Key Risks . . . . o o o o e e e 26
6.2 Risks MItIgAtIONS © .« « v v v v e et e e 28

7 Implementation of the Query Service (Qserv) Prototype 29
7.1 COMPONENTY . . o v v e e e e e e e e e e 29
....................................... 30

7.1.2 XROOtD . . o v oot 30

7.2 Partitioning . . . . . o v v 31
7.3 QuUery GENEration . . . . . . o ovv v e 32
7.3.1 Processingmodules . . . . . . . ... 32

[7.3.2 Processing module OVerview . . . ... oo 33
.......................................... 34
7.41 Wireprotocol. . . . . . o 34

7.42 Frontend . . . . . . 35

743 WOKeN . o vttt 36

7.5 Threading Model . . . . . . . . 36

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

iv



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Dota Management Database Devan Lo 135 Lovest Revision 2017.07.06
7.6 AZEregation . . . . o v vt e 37
.......................................... 37
7.7.1 Secondary Index Structured . . . . . ... ... ... 38
[7.7.2 Secondary Index Loading. . . . . . o oot 38
7.8 Data DistribUtiON . . . o v o o e e e e e e 39
[7.8.1 Database data distribution . . . . . . . ..o 39
[7.8.2 Failure and integrity maintenance . . . . ... ... ... 40
7.9 Metadatd . . . . oot 40
7.9.1 Staticmetadatd . . . . .. .. 41
7.9.2 Dynamicmetadata . . . . . .. ...t 42
7.9.3 Architecturd . . . .. ... 43
7.9.4 Typical Data FIOW . . . . . o o o 43
7.10 Shared SCaNg . . . . o v v o 44
7.10.1 Background . . . . . . ... 45
7.10.2 IMplementation . . . . . v v v 45
7.10.3 Memory Management . . . . . .. ..o 47
[7.10.4 XRootD scheduling support . . . . . . oo oo v 48
[7.10.5 Multiple tables SUPPOrt . . . . v v v oo e e 48
7.11 Level 3: User Tables, External Datd . . . . . . . ..o v v v, 49
[7.12 Cluster and Task Managementl . . . . . . oo v v v i i i e e s 49
713 Fault Tolerancd . . . . . o o o 50
[7.14 Next-to-database Processing . . . . . . . o v v v i 52
7.15 ADMINIStration . . . o v v v e e e e e e 52
7.15.0 Installation . . . . . vt 52
7.15.2 Data loading . . . . . .o oo 53
[7.15.3 AdMINistrative SCripts . . . . o v v v e e e e e e e 55
[7.16 ReSUIt COMTECtNESS « « « v o o v e e e e e e e e e e e e 56
[7.17 Current Status and FUtUre PIans . . . . .« v v oo o e e e e 56
.18 OPENISSUES . « v v v v e e e e e e e e e e e e e e 60

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

\



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Dota Management Database Devan Lo 135 Lovest Revision 2017.07.06
8 Large-scale Testing 60
B.1 INtrodUCtion . . . . v v v e e e e 61
B.1.1 Idealenvironment . . . . . . .. 61

B.1.2 Schedule of testing . . . . . . v 62

B.1.3 CUIrent status Of teStS . . . . v v v v o e e e e e e 62

8.2 150-node Scalability TeSt . . . . o v oo o 63
B.2.1 Hardward . . . . . . . 63

B8.2.2 Datad . . . . . e e e e e e 63

B.23 QUEMEY . o vttt 64
....................................... 69

B.2.5 CONCUIMTENCY . « v v v e e e e e e e e e e e e e e e e 72

B.2.6 DISCUSSION . « o v v v e e e e e e 73

8.3 100-TB Scalability Test JHU 20-node cluster) . . ... ............... 74
8.4 Concurrency Tests (SLAC 100,000 chunk-queries). . . . . . . .. oo v v i .. 77
8.5 300-node Scalability Test (IN2P3 300-node cluster) . . . . . . . ..o oo .. 78
B.5.1 Hardward . . . . . . 78

8.5.2 Datd . . . . .. e e e e e e e 79

B.5.3 Software stability issues identified . . ... ... ... ... . ... .... 79

B.54 QUEMIEY . o v vt 79
....................................... 82

B.5.6 DISCUSSION . .« o v v v e e e e e e 83

9 Other Demonstrations 84
0.1 Shared SCaNT . . . o o v o 84
0.2 FaultTolerance . . . . .. .. ... 85
0.2.1 Workerfailure . . . . . . 85

0.2.2 Data Corruption . . . . v v v v 86

0.2.3 FULUre teStY . . o o o vt e ot e e e e e 86

9.3 Multiple Qserv Installations on a Single Machind . . . . ... ........... 87

10 References 87

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

Vi



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

Data Management Database Design

1 Executive Summary

The LSST baseline database architecture for its massive user query access system is an MPP
(massively parallel processing) relational database composed of a single-node non-parallel
DBMS, a distributed communications layer, and a master controller, all running on a shared-
nothing cluster of commodity servers with locally attached spinning disk drives, capable of in-
cremental scaling and recovering from hardware failures without disrupting running queries.
All large catalogs are spatially partitioned horizontally into materialized chunks, and the re-
maining catalogs are replicated on each server; the chunks are distributed across all nodes.
The Object catalog is further partitioned into sub-chunks with overlaps, materialized on-the-fly
when needed. Chunking is handled automatically without exposure to users. Selected tables
are also partitioned vertically to maximize performance of most common analysis. The sys-
tem uses a few critical indexes to speed up spatial searches, time series analysis, and simple
but interactive queries. Shared scans are used to answer all but the interactive queries. Such
an architecture is primarily driven by the variety and complexity of anticipated queries, rang-
ing from single object lookups to complex O(»?) full-sky correlations over billions of elements.

The LSST baseline database architecture for its real time Alert Production relies on horizontal
time-based partitioning. To guarantee reproducibility, no-overwrite-update techniques com-
bined with maintaining validity time for appropriate rows are employed. Two database repli-
cas are maintained to isolate live production catalogs from user queries; the replicas are syn-
chronized in real time using native database replication.

Given the current state of the RDBMS and Map/Reduce market, an RDBMS-based solution is
a much better fit, primarily due to features such as indexes, schema and speed. No off-the-
shelf, reasonably priced solution meets our requirements (today), even though production
systems at a scale comparable to LSST have been demonstrated already by industrial users
such as eBay using a prohibitively expensive, commercial RDBMS.

The baseline design involves many choices such as component technology, partition size, in-
dex usage, normalization level, compression trade-offs, applicability of technologies such as
solid state disks, ingest techniques and others. We ran many tests to determine the design
configuration, determine limits and uncover potential bottlenecks. In particular, we chose

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

1



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-06

MySQL as our baseline open source, single-node DBMS and XRootDIl [9] as an open source,
elastic, distributed, fault-tolerant messaging system.

We developed a prototype of the baseline architecture, called Qserv. To mitigate major risks,
such as insufficient scalability or potential future problems with the underlying RDBMS, Qserv
pays close attention to minimizing exposure to vendor-specific features and add-ons. Many
key features including the scalable dispatch system and 2-level partitioner have been imple-
mented at the prototype level and integrated with the two underlying production-quality com-
ponents: MySQL and XRootD. Scalability and performance have been successfully demon-
strated on a variety of clusters ranging from 20-node-100TB cluster to 300-node-30TB cluster,
tables as large as 50 billion rows and concurrency exceeding 100,000 in-flight chunk-queries.
Required data rates for all types of queries (interactive, full sky scans, joins, correlations) have
been achieved. Basic fault tolerance recovery mechanisms and basic version of shared scans
were demonstrated. Future work includes adding support for user tables, demonstrating
cross-matching, various non-critical optimizations, and most importantly, making the proto-
type more user-friendly and turning it into a production-ready system.

If an equivalent open-source, community supported, off-the-shelf database system were to
become available, it could present significant support cost advantages over a production-
ready Qserv. The largest barrier preventing us from using an off-the-shelf system is spherical
geometry and spherical partitioning support.

To increase the chances such a system will become reality in the next few years, in 2008 we
initiated the SciDB array-based scientific database project. Due to lack of many traditional
RDBMS-features in SciDB and still nascent fault tolerance, we believe it is easier to build the
LSST database system using MySQL+XRootD than it would be to build it based on SciDB. In
addition we closely collaborate with the MonetDB open source columnar database team - a
successful demonstration of Qserv based on MonetDB instead of MySQL was done in 2012.
Further, to stay current with the state-of-the-art in peta-scale data management and analysis,
we continue a dialog with all relevant solution providers, both DBMS and Map/Reduce, as
well as with data-intensive users, both industrial and scientific, through the XLDBE conference
series we lead, and beyond.

Thttp://xrootd.org
’https://x1db.org

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

2


http://xrootd.org
https://xldb.org

[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

2 Introduction

This document discusses the LSST database system architecture. Section E discusses the
baseline architecture. Section g explains the LSST database-related requirements. Section E
discusses design trade-offs and decision process, including small scale tests we run. Section B
covers risk analysis. Section [ﬂ discusses the prototype design (Qserv), including design, cur-
rent status of the software and future plans. Section E and Section E describe large scale Qserv
tests and demonstrations. For some additional background, DMTN-046 covers in-depth anal-
ysis of off-the-shelf potential solutions (Map/Reduce and RDBMS) as of 2013.

3 Baseline Architecture

This section describes the most important aspects of the LSST baseline database architecture.
The choice of the architecture is driven by the project requirements (see reqs) as well as cost,
availability and maturity of the off-the-shelf solutions currently available on the market (see
DMTN-046), and design trade-offs (see Section E). The architecture is periodically revisited:
we continuously monitor all relevant technologies, and accordingly fine-tune the baseline ar-
chitecture.

In summary, the LSST baseline architecture for Alert Production is an off-the-shelf RDBMS
system which uses replication for fault tolerance and which takes advantage of horizontal
(time-based) partitioning. The baseline architecture for user access to Data Releases is an
MPP (multi-processor, parallel) relational database running on a shared-nothing cluster of
commodity servers with locally attached spinning disk drives; capable of (a) incremental scal-
ing and (b) recovering from hardware failures without disrupting running queries. All large
catalogs are spatially partitioned into materialized chunks, and the remaining catalogs are
replicated on each server; the chunks are distributed across all nodes. The Object catalog
is further partitioned into sub-chunks with overlaps,B materialized on-the-fly when needed.
Shared scans are used to answer all but low-volume user queries. Details follow below.

3.1 Alert Production and Up-to-date Catalog

Alert Production involves detection and measurement of difference-image-analysis sources
(DiaSources). New DiaSources are spatially matched against the most recent versions of ex-
isting DiaObjects, which contain summary properties for variable and transient objects (and

3A chunk’s overlap is implicitly contained within the overlaps of its edge sub-chunks.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

3



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

false positives). Unmatched DiaSources are used to create new DiaObjects. If a DiaObject
has an associated DiaSource that is no more than a month old, then a forced measurement
(DiaForcedSource) is taken at the position of that object, whether a corresponding DiaSource
was detected in the exposure or not.

The output of Alert Production consists mainly of three large catalogs - DiaObject, DiaSource,
and DiaForcedSource - as well as several smaller tables that capture information about e.g.
exposures, visits and provenance.

These catalogs will be modified live every night. After Data Release Production has been run
based on the first six months of data and each year’s data thereafter, the live Level 1 catalogs
will be archived to tape and replaced by the catalogs produced by DRP. The archived catalogs
will remain available for bulk download, but not for queries.

Note that existing DiaObjects are never overwritten. Instead, new versions of the AP-produced
and DRP-produced DiaObjects are inserted, allowing users to retrieve (for example) the prop-
erties of DiaObjects as known to the pipeline when alerts were issued against them. To enable
historical queries, each DiaObject row is tagged with a validity start and end time. The start
time of a new DiaObject version is set to the observation time of the DiaSource or DiaForced-
Source that led to its creation, and the end time is set to infinity. If a prior version exists, then
its validity end time is updated (in place) to equal the start time of the new version. As a result,
the most recent versions of DiaObjects can always be retrieved with:

SELECT * FROM DiaObject WHERE validityEnd = infinity

Versions as of some time t are retrievable via:

SELECT * FROM DiaObject WHERE validityStart <= t AND t < validityEnd

Note that a DiaSource can also be reassociated to a solar-system object during day time pro-
cessing. This will result in a new DiaObject version unless the DiaObject no longer has any
associated DiaSources. In that case, the validity end time of the existing version is set to the
time at which the reassociation occurred.

Once a DiaSource is associated with a solar system object, it is never associated back to a
DiaObject. Therefore, rather than also versioning DiaSources, columns for the IDs of both the
associated DiaObject and solar system object, as well as a reassociation time, are included.
Reassociation will set the solar system object ID and reassociation time, so that DiaSources
for DiaObject 123 at time ¢t can be obtained using:

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

4



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

SELECT *

FROM DiaSource

WHERE diaObjectld = 123

AND midPointTai <= t

AND (ssObjectld is NULL OR ssObjectReassocTime > t)

DiaForcedSources are never reassociated or updated in any way.

From the database point of view then, the alert production pipeline will perform the following
database operations 189 times (once per LSST CCD) per visit (every 39 seconds):

1. Issue a point-in-region query against the DiaObject catalog, returning the most recent
versions of the objects falling inside the CCD.

2. Use the IDs of these diaObjects to retrieve all associated diaSources and diaForced-
Sources.

3. Insert new diaSources and diaForcedSources.
4. Update validity end times of diaObjects that will be superseded.

5. Insert new versions of diaObjects.

All spatial joins will be performed on in-memory data by pipeline code, rather than in the
database. While Alert Production does also involve a spatial join against the Level 2 (DRP-
produced) Object catalog, this does not require any database interaction: Level 2 Objects
are never modified, so the Object columns required for spatial matching will be dumped to
compact binary files once per Data Release. These files will be laid out in a way that allows for
very fast region queries, allowing the database to be bypassed entirely.

The DiaSource and DiaForcedSource tables will be split into two tables, one for historical data
and one containing records inserted during the current night. The current-night tables will
be small and rely on a transactional engine like InnoDB, allowing for speedy recovery from
failures. The historical-data tables will use the faster non-transactional MyISAM or Aria stor-
age engine, and will also take advantage of partitioning. The Data Release catalogs used to
seed the live catalogs will be stored in a single initial partition, sorted spatially (using the Hi-
erarchical Triangular Mesh trixel IDs for their positions). This means that the diaSources and

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

5



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

diaForcedSources for the diaObjects in a CCD will be located close together on disk, minimiz-
ing seeks. Every month of new data will be stored in a fresh partition, again sorted spatially.
Such partitions will grow to contain just a few billion rows over the course of a month, even
for the largest catalog. At the end of each night, the contents of the current-night table are
sorted and appended to the partition for the current-month, then emptied. Each month, the
entire current-month partition is sorted spatially (during the day), and a partition for the next
month is created.

For DiaObject, the same approach is used. However, DiaObject validity end-time updates can
occur in any partition, and are not confined to the current-night table. We therefore expect
to use a transactional storage engine like InnoDB for all partitions. Because InnoDB clusters
tables using the primary key, we will likely declare it to consist of a leading HTM ID column,
followed by disambiguating columns (diaObjectld, validityStart). The validity end time column
will not be part of any index.

No user queries will be allowed on the live production catalogs. We expect to maintain a
separate replica just for user queries, synchronized in real time using one-way master-slave
native database replication. The catalogs for user queries will be structured identically to the
live catalogs, and views will be used to hide the splits (using a “UNION ALL").

For additional safety, we might choose to replicate the small current-night tables, all DiaObject
partitions, and the remaining (small) changing tables to another hot stand-by replica. In case
of disastrous master failure that cannot be fixed rapidly, the slave serving user queries will
be used as a temporary replacement, and user queries will be disallowed until the problem is
resolved.

Based on the science requirements, only short-running, relatively simple user queries will be
needed on the Level 1 catalogs. The most complex queries, such as large-area near neigh-
bor queries, will not be needed. Instead, user queries will consist mainly of small-area cone
searches, light curve lookups, and historical versions of the same. Since the catalogs are
sorted spatially, we expect to be able to quickly answer spatial queries using indexed HTM
ID columns and the scisql UDFs, an approach that has worked well in data-challenges to
date. Furthermore, note that the positions of diaSources/diaForcedSources associated with
the same diaObject will be very close together, so that sorting to obtain good spatial locality
also ends up placing sources belonging to the same light curve close together. In other words,
the data organization used to provide fast pipeline query response is also advantageous for
user queries.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

6



LARGE SYNOPTIC SURVEY TELESCOPE

[S57T

Data Management Database Design LDM-135 Latest Revision 2017-07-06
3.2 Data Release Production

Data Release Production will involve the generation of significantly larger catalogs than Alert
Production. However, these are produced over the course of several months, pipelines will
not write directly to the database, and there are no pipeline queries with very low-latency
execution time requirements to be satisfied. While we do expect several pipeline-related full
table scans over the course of a Data Release Production, we will need to satisfy many user
queries involving such scans on a daily basis. User query access is therefore the primary driver
of our scalable database architecture, which is described in detail below. For a description of
the data loading process, please see gserve-data-loading.

3.3 User Query Access

The user query access is the primary driver of the scalable database architecture. Such archi-
tecture is described below.

3.3.1 Distributed and parallel

The database architecture for user query access relies on a model of distributing computation
among autonomous worker nodes. Autonomous workers have no direct knowledge of each
other and can complete their assigned work without data or management from their peers.
This implies that data must be partitioned, and the system must be capable of dividing a
single user query into sub-queries, and executing these sub-queries in parallel - running a
high-volume query without parallelizing it would take unacceptably long time, even if run on
very fast CPU. The parallelism and data distribution should be handled automatically by the
system and hidden from users.

3.3.2 Shared-nothing

Such architecture provides good foundation for incremental scaling and fault recovery: be-
cause nodes have no direct knowledge of each other and can complete their assigned work
without data or management from their peers, it is possible to add node to, or remove node
from such system with no (or with minimal) disruption. However, to achieve fault tolerance
and provide recover mechanisms, appropriate smarts have to be build into the node man-
agement software.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

7



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-06

Combiner

Distributor

P A—
[ MySGL MySGL MySQL MySQL
Node Node Node

! ¢ ' !
= e ST ey S
Partitioned Partitioned Partitioned Partitioned
Data Data Data Data
——

FIGURE 1: Shared-nothing database architecture.

3.3.3 Indexing

Disk 1/0 bandwidth is expected to be the greatest bottleneck. Data can be accessed either
through index, which typically translates to a random access, or a scan, which translates to a
sequential read (unless multiple competing scans are involved).

Indexes dramatically speed up locating individual rows, and avoid expensive full table scans.
They are essential to answer low volume queries quickly, and to do efficient table joins. Also,
spatial indexes are essential. However, unlike in traditional, small-scale systems, the advan-
tages of indexes become questionable when a larger number of rows is to be selected from
a table. In case of LSST, selecting even a 0.01% of a table might lead to selecting millions of
rows. Since each fetch through an index might turn into a disk seek, it is often cheaper to
read sequentially from disk than to seek for particular rows via index, especially when the
index itself is out-of-memory. For that reason the architecture forgoes relying on heavy in-
dexing, only a small number of carefully selected indexes essential for answering low-volume
queries, enabling table joins, and speeding up spatial searches will be maintained. For an
analytical query system, it makes sense to make as few assumptions as possible about what
will be important to our users, and to try and provide reasonable performance for as broad
a query load as possible, i.e. focus on scan throughput rather than optimizing indexes. A fur-
ther benefit to this approach is that many different queries are likely to be able to share scan

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

8



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

10, boosting system throughput, whereas caching index lookup results is likely to provide far
fewer opportunities for sharing as the query count scales (for the amounts of cache we can
afford).

3.3.4 Shared scanning

Now with table-scanning being the norm rather than the exception and each scan taking a
significant amount of time, multiple full-scan queries would randomize disk access if they
each employed their own full-scanning read from disk. Shared scanning (also called convoy
scheduling) shares the 1/0 from each scan with multiple queries. The table is read in pieces,
and all concerning queries operate on that piece while it is in memory. In this way, results
from many full-scan queries can be returned in little more than the time for a single full-scan
query. Shared scanning also lowers the cost of data compression by amortizing the CPU cost
among the sharing queries, tilting the tradeoff of increased CPU cost versus reduced I/0 cost
heavily in favor of compression.

Shared scanning will be used for all high-volume and super-high volume queries. Shared
scanning is helpful for unpredictable, ad-hoc analysis, where it prevents the extra load from
increasing the disk /10 cost - only more CPU is needed. On average we expect to continuously
run the following scans:

+ one full table scan of Object table for the latest data release only,

+ one synchronized full table scan of Object, Source and ForcedSource tables every 12
hours for the latest data release only,

+ one synchronized full table scan of Object and Object_Extra every 8 hours for the latest
and previous data releases.

Appropriate Level 3 user tables will be scanned as part of each shared scan as needed to
answer any in-flight user queries.

Shared scans will take advantage of table chunking explained below. In practice, within a
single node a scan will involve fetching sequentially a chunk of data at a time and executing
on this chunk all queries in the queue. The level of parallelism will depend on the number of
available cores.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

9



LARGE SYNOPTIC SURVEY TELESCOPE

[S57T

Data Management Database Design LDM-135 Latest Revision 2017-07-06

Running multiple shared scans allows relatively fast response time for Object-only queries,
and supporting complex, multi-table joins: synchronized scans are required for two-way joins
between different tables. For a self-joins, a single shared scans will be sufficient, however each
node must have sufficient memory to hold 2 chunks at any given time (the processed chunk
and next chunk). Refer to the sizing model [LDM-141]] for further details on the cost of shared
scans.

Low-volume queries will be executed ad-hoc, interleaved with the shared scans. Given the
number of spinning disks is much larger than the number of low-volume queries running at
any given time, this will have very limited impact on the sequential disk 1/0 of the scans, as
shown in LDM-141,.

3.3.5 Clustering

The data in the Object Catalog will be physically clustered on disk spatially - that means that
objects collocated in space will be also collocated on disk. All Source-type catalogs (Source,
ForcedSource, DiaSource, DiaForcedSource) will be clustered based on their corresponding
objectld - this approach enforces spatial clustering and collocates sources belonging to the
same object, allowing sequential read for queries that involve times series analysis.

SSObject catalog will be unpartitioned, because there is no obvious fixed position that we
could choose to use for partitioning. The associated diaSources (which will be intermixed with
diaSources associated with static diaSources) will be partitioned, according their position. For
that reason the SSObject-to-DiaSource join queries will require index searches on all chunks,
unlike DiaObject-to-DiaSource queries. Since SSObject is small (low millions), this should not
be an issue.

3.3.6 Partitioning

Data must be partitioned among nodes in a shared-nothing architecture. While some sharding
approaches partition data based on a hash of the primary key, this approach is unusable for
LSST data since it eliminates optimizations based on celestial objects’ spatial nature.

3.3.6.1 Sharded data and sharded queries All catalogs that require spatial partitioning
(Object, Source, ForcedSource, DiaSource, DiaForcedSource) as well as all the auxiliary tables
associated with them, such as ObjectType, or PhotoZ, will be divided into spatial partitions of

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

10



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

roughly the same area by partitioning then into declination zones, and chunking each zone into
RA stripes. Further, to be able to perform table joins without expensive inter-node data trans-
fers, partitioning boundaries for each partitioned table must be aligned, and chunks of differ-
ent tables corresponding to the same area of sky must be co-located on the same node. To
ensure chunks are appropriately sized, the two largest catalogs, Source and ForcedSource, are
expected to be partitioned into finer-grain chunks. Since objects occur at an approximately-
constant density throughout the celestial sphere, an equal-area partition should spread a load
that is uniformly distributed over the sky.

Smaller catalogs that can be partitioned spatially, such as Alert and exposure metadata will
be partitioned spatially. All remaining catalogs, such provenance or SDQA tables will be repli-
cated on each node. The size of these catalogs is expected to be only a few terabytes.

With data in separate physical partitions, user queries are themselves fragmented into sepa-
rate physical queries to be executed on partitions. Each physical query’s result can be com-
bined into a single final result.

3.3.6.2 Two-level partitions Determining the size and number of data partitions may not
be obvious. Queries are fragmented according to partitions so an increasing number of par-
titions increases the number of physical queries to be dispatched, managed, and aggregated.
Thus a greater number of partitions increases the potential for parallelism but also increases
the overhead. For a data-intensive and bandwidth-limited query, a parallelization width close
to the number of disk spindles should minimize seeks and maximizing bandwidth and per-
formance.

From a management perspective, more partitions facilitate rebalancing data among nodes
when nodes are added or removed. If the number of partitions were equal to the number of
nodes, then the addition of a new node would require the data to be re-partitioned. On the
other hand, if there were many more partitions than nodes, then a set of partitions could be
assigned to the new node without re-computing partition boundaries.

Smaller and more numerous partitions benefit spatial joins. In an astronomical context, we
areinterested in objects near other objects, and thus a full O(»?) join is not required-a localized
spatial join is more appropriate. With spatial data split into smaller partitions, an SQL engine
computing the join need not even consider (and reject) all possible pairs of objects, merely
all the pairs within a region. Thus a task that is O(n?) naively becomes O(kn) where k is the

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

11



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

number of objects in a partition.

In consideration of these trade-offs, two-level partitioning seems to be a conceptually sim-
ple way to blend the advantages of both extremes. Queries can be fragmented in terms of
coarse partitions (“chunks”), and spatial near-neighbor joins can be executed over more fine
partitions (“sub-chunks”) within each partition. To avoid the overhead of the sub-chunks for
non-join queries, the system can store chunks and generate sub-chunks on-demand for spa-
tial join queries. On-the-fly generation for joins is cost-effective due to the drastic reduction
of pairs, which is true as long as there are many sub-chunks for each chunk.

3.3.6.3 Overlap A strict partitioning eliminates nearby pairs where objects from adjacent
partitions are paired. To produce correct results under strict partitioning, nodes need access
to objects from outside partitions, which means that data exchange is required. To avoid
this, each partition can be stored with a pre-computed amount of overlapping data. This
overlapping data does not strictly belong to the partition but is within a preset spatial distance
from the partition’s borders. Using this data, spatial joins can be computed correctly within
the preset distance without needing data from other partitions that may be on other nodes.

Overlap is needed only for the Object Catalog, as all spatial correlations will be run on that
catalog only. Guided by the experience from other projects including SDSS, we expect to
preset the overlap to ~1 arcmin, which results in duplicating approximately 30% of the Object
Catalog.

3.3.6.4 Spherical geometry Supportforspherical geometryisnotcommonamongdatabases
and spherical geometry-based partitioning was non-existent in other solutions when we de-
cided to develop Qserv. Since spherical geometry is the norm in recording positions of celes-
tial objects (right-ascension and declination), any spatial partitioning scheme for astronomical
object must account for its complexities.

3.3.6.5 Dataimmutability Itisimportantto note thatuser query access operates on read-
only data. Not having to deal with updates simplifies the architecture and allows us to add
extra optimizations not possible otherwise. The Level 1 data which is updated is small enough
and will not require the scalable architecture - we plan to handle all Level 1 data set with out-
of-the box MySQL as described in alert-production.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

12



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06
3.3.7 Long-running queries

Many of the typical user queries may need significant time to complete, at the scale of hours.
To avoid re-submission of those long-running queries in case of various failures (networking
or hardware issues) the system will support asynchronous query execution mode. In this
mode users will submit queries using special options or syntax and the system will dispatch a
query and immediately return to user some identifier of the submitted query without blocking
user session. This query identifier will be used by user to retirieve query processing status,
query result after query completes, or a partial query result while query is still executing.

The system should be able to estimate the time which user query will need to complete and
refuse to run long queries in a regular blocking mode.

3.3.8 Technology choice

As explained in DMTN-046, no off-the-shelf solution meets the above requirements today,
and RDBMS is a much better fit than Map/Reduce-based system, primarily due to features
such as indexes, schema and speed. For that reason, our baseline architecture consists of
custom software built on two production components: an open source, “simple”, single-node,
non-parallel DBMS (MySQL) and XRootD. To ease potential future DBMS migrations, the com-
munication with the underlying DBMS relies on basic DBMS functionality only, and avoids any
vendor-specific features and additions.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

13



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06
User
proxy
I MySQL

master |

e
gserv-ofs

worker | |

FiIcurRe 2: Component connections in Qserv.

4 Requirements

The key requirements driving the LSST database architecture include: incremental scaling,
near-real-time response time for ad-hoc simple user queries, fast turnaround for full-sky scan-
s/correlations, reliability, and low cost, all at multi-petabyte scale. These requirements are
primarily driven by the ad-hoc user query access.

4.1 General Requirements

Incremental scaling. The system must to tens of petabytes and trillions of rows. It must
grow as the data grows and as the access requirements grow. New technologies that become
available during the life of the system must be able to be incorporated easily. Expected sizes
for the largest database catalogs (for the last data release, uncompressed, data only) are cap-
tured in the table below <tab-expected-catalog-size>. For further storage, disk and network
bandwidth and I/0 analyses, see LDM-141.

Reliability. The system must not lose data, and it must provide at least 98% up time in the
face of hardware failures, software failures, system maintenance, and upgrades.

Low cost. It is essential to not overrun the allocated budget, thus a cost-effective, preferably

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

14



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-06

open-source solution is strongly preferred.

4.2 Data Production Related Requirements

In a nutshell, the LSST database catalogs will be generated by a small set of production pipelines:

+ Data Release Production - it produces all key catalogs. Ingest rates are very modest, as
DRP takes several months to complete and is dominated by CPU-intensive application
jobs. Ingest can be done separately from pipeline processing, as an post-processing
step.

* Nightly Alert Production - it produces difference image sources, and updates the DiaOb-
ject, SSObject, DiaSource, DiaForcedSource catalogs. Since alerts need to be generated
in under a minute after data has been taken, data has to be ingested/updated in almost-
real time. The number of row updates/ingested is modest: ~40K new rows and updates
occur every ~39 sec [g].

+ Calibration Pipeline - it produces calibration information. Due to small data volume and
no stringent timing requirements, ingest bandwidth needs are very modest.

In addition, the camera and telescope configuration is captured in the Engineering & Facility
Database. Data volumes are very modest.

Further, the Level 1 live catalog will need to be updated with minimal delay. This catalog
should not be taken off-line for extended periods of time.

The database system must allow for occasional schema changes for the Level 1 data, and
occasional changes that do not alter query resultsd for the Level 2 data after the data has
been released. Schemas for different data releases are allowed to be very different.

4.3 Query Access Related Requirements

The Science Data Archive Data Release query load is defined primarily in terms of access to
the large catalogs in the archive: Object, Source, and ForcedSource. Queries to image meta-

4Example of non-altering changes including adding/removing/resorting indexes, adding a new column with
derived information, changing type of a column without loosing information, (eg., FLOAT to DOUBLE would be always
allowed, DOUBLE to FLOAT would only be allowed if all values can be expressed using FLOAT without loosing any
information)

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

15



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

data, for example, though numerous, are expected to be fast and can easily be handled by
replicating the relatively small metadata tables.

The large catalog query load is specified as follows:

1. 100 simultaneous queries for rows corresponding to single Objects or small spatial re-
gions (on the order of at most 10s of arcminutes), with each query having an average
response time of 10 seconds. This leads to a throughput of 10 “low-volume” queries per
second. This number is approximately five times the peak “professional astronomer”
query rate to the SDSS SkyServer. Each low-volume query is expected to return 0.5 GB
of data or less. These queries are further subdivided as follows:

A. Single object fetches: 5%.
B. Few objects fetched by objectld: 60%.
C. Small area by spatial index: 25%.

D. Small area by scan: 10%.

Furthermore, 70% of queries are expected to be of Objects only, with 20% retrieving
Sources for Objects and 10% retrieving ForcedSources.

2. 50 simultaneous analytical queries involving full table scans of one or more large tables,
with a target throughput of 20 queries per hour. Each “high-volume” query is expected
to return up to 6 GB of data. We further subdivide these as follows:

A. Throughput of 16 queries per hour with an average latency of 1 hour on the most
frequently accessed columns in the Object table. These provide fast turnaround
and high throughput for the most common types of queries.

B. Throughput of 1 query per hour with average latency of 12 hours for joins of the
Source table with the most frequently accessed columns in the Object table. These
provide a reasonable turnaround time and good throughput for time series queries.

C. Throughput of 1 query per hour with average latency of 12 hours for joins of the
ForcedSource table with the most frequently accessed columns in the Object table.
These provide a reasonable turnaround time and good throughput for detailed time
series queries.

D. Throughput of 1 query per hour with average latency of 8 hours for scans of the full
Object table or joins of it with up to three additional tables other than Source and
ForcedSource. These provide “adhoc” access for complex queries.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

16



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

E. Throughput of 1 query per hour with average latency of 8 hours for scans of the full
Object table in the previous Data Release or joins of it with up to three additional
tables. These provide “ad hoc” access for older data.

We also include in the requirements up to 20 simultaneous queries for the Level 1 Database
and 5 simultaneous queries for the Engineering and Facilities Database, both completing in
an average of 10 seconds.

Reproducibility. Queries executed on any Level 1 and Level 2 data products must be repro-
ducible.

Real time. A large fraction of ad-hoc user access will involve so called “low-volume” queries
- queries that touch small area of sky, or request small number of objects. These queries are
required to be answered in under 10 sec. On average, we expect to see ~100 such queries
running at any given time.

Fast turnaround. High-volume queries - queries that involve full-sky scans are expected
to be answered in 1 hour, while more complex full-sky spatial and temporal correlations are
expected to be answered in ~8-12 hours. ~50 simultaneous high-volume queries are expected
to be running at any given time.

Cross-matching with external/user data. Occasionally, LSST database catalog will need to
be cross-matched with external catalogs: both large, such as SDSS, SKA or GAIA, and small,
such as small amateur data sets. Users should be able to save results of their queries, and
access them during subsequent queries.

Query complexity. The system needs to handle complex queries, including spatial correla-
tions, time series comparisons. Spatial correlations are required for the Object catalog only
- this is an important observation, as this class of queries requires highly specialized, 2-level
partitioning with overlaps.

Ad-hoc. It is impossible to predict all types of analysis astronomers will run. The unprece-
dented volume and scope of data might enable new kind of analysis, and new ways of analy-
Sis.

Flexibility. Sophisticated end users need to be able to access all this data in a flexible way with
as few constraints as possible. Many end users will want to express queries directly in SQL,
most of basic SQL92 will be required. Itis not yet clear whether the full language is necessary

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

17



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

or if a subset is adequate, and, if so, what operations need to be part of that subset.

4.4

4.4.1

Discussion

Implications

The above requirements have important implications on the LSST data access architecture.

The system must allow rapid selection of small number of rows out of multi-billion row
tables. To achieve this, efficient data indexing in both spatial and temporal dimensions
is essential.

The system must efficiently join multi-trillion with multi-billion row tables. Denormal-
izing these tables to avoid common joins, such as Object with Source or Object with
ForcedSource, would be prohibitively expensive.

The system must provide high data bandwidth. In order to process terabytes of data in
minutes, data bandwidths on the order of tens to hundreds of gigabytes per second are
required.

To achieve high bandwidths, to enable expandability, and to provide fault tolerance, the
system will need to run on a distributed cluster composed of multiple machines.

The most effective way to provide high-bandwidth access to large amounts of data is to
partition the data, allowing multiple machines to work against distinct partitions. Data
partitioning is also important to speed up some operations on tables, such as index
building.

Multiple machines and partitioned data in turn imply that at least the largest queries
will be executed in parallel, requiring the management and synchronization of multiple
tasks.

Limited budget implies the system needs to get most out available hardware, and scale it
incrementally as needed. The system will be disk I/0 limited, and therefore we anticipate
attaching multiple queries to a single table scan (shared scans) will be a must.

4.4.2 Query complexity and access patterns

A compilation of representative queries provided by the LSST Science Collaborations, the Sci-

ence

Council, and other surveys have been captured [4]. These queries can be divided into

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

18



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

several distinct groups: analysis of a single object, analysis of objects meeting certain criteria
in a region or across entire sky, analysis of objects close to other objects, analysis that require
special grouping, time series analysis and cross match with external catalogs. They give hints
as to the complexity required: these queries include distance calculations, spatially localized
self-joins, and time series analysis.

Small queries are expected to exhibit substantial spatial locality (refer to rows that contain
similar spatial coordinates: right ascension and declination). Some kinds of large queries are
expected to exhibit a slightly different form of spatial locality: joins will be among rows that
have nearby spatial coordinates. Spatial correlations will be executed on the Object table;
spatial correlations will not be needed on Source or ForcedSource tables.

Queries related to time series analysis are expected to need to look at the history of obser-
vations for a given Object, so the appropriate Source or ForcedSource rows must be easily
joined and aggregate functions operating over the list of Sources must be provided.

External data sets and user data, including results from past queries may have to be dis-
tributed alongside distributed production table to provide adequate join performance.

The query complexity has important implications on the overall architecture of the entire sys-
tem.

5 Design Trade-offs

The LSST database design involves many architectural choices. Example of architectural deci-
sions we faced include how to partition the tables, how many levels of partitioning is needed,
where to use an index, how to normalize the tables, or how to support joins of the largest
tables. This section covers the test we run to determine the optimal architecture of MySQL-
based system.

5.1 Standalone Tests
5.1.1 Spatial join performance

This test was run to determine how quickly we can do a spatial self-join (find objects within
certain spatial distance of other objects) inside a single table. Ultimately, in our architecture,
a single table represents a single partition (or sup-partition). The test involved trying various

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

19



ST

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-06

options and optimizations such as using different indexes (clustered and non clustered), pre-
calculating various values (like COS(RADIANS(decl))), and reordering predicates. We run these
tests for all reasonable table sizes (using MySQL and PostgreSQL). We measured CPU and disk
I/0 to estimate impact on hardware. In addition, we re-run these tests on the Isst10 machine
at NCSA to understand what performance we may expect there for DC3b. These tests are
documented in [2]. We found that PostgreSQL was 3.7x slower for spatial joins over a range
of row counts, and reducing the row-count per partition to less than 5k rows was crucial in
achieving lowering compute intensity, but that predicate selectivity could compensate for a
2-4x greater row count.

5.1.2 Building sub-partitions

Based on the “spatial join performance” test we determined that in order to speed up self-
joins within individual tables (partitions), these partitions need to be very small, O(few K)
rows. However, if we partition large tables into a very large number of small tables, this will
result in unmanageable number of tables (files). So, we determined we need a second level
of partitioning, which we call sub-partition on the fly. This test included:

* sub-partitioning through queries:

1. one query to generate one sub-partition

2. relying on specially introduced column (subPartitionId).

*+ segregating data into sub-partitions in a client C++ program, including using a binary
protocol.

We timed these tests. This testis described athttp://dev.1sstcorp.org/trac/wiki/db/BuildSubPart.
These tests showed that it was fastest to build the on-the-fly sub-partitions using SQL in the
engine, rather than performing the task externally and loading the sub-partitions back into

the engine.

5.1.3 Sub-partition overhead

We also run detailed tests to determine overhead of introducing sub-partitions. For this test
we used a 1 million row table, measured cost of a full table scan of such table, and compared
it against scanning through a corresponding data set partitioned into sub-partitioned. The

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

20


http://dev.lsstcorp.org/trac/wiki/db/BuildSubPart

ST

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

tests involved comparing in-memory with disk-based tables. We also tested the influence of
introducing “skinny” tables, as well as running sub-partitioning in a client C++ program, and
inside a stored procedure. These tests are described at http://dev.1sstcorp.org/trac/wiki/
db/SubPartOverhead. The on-the-fly overhead was measured to be 18% for select * queries,
but 3600% if only one column (the skinniest selection) was needed.

5.1.4 Avoiding materializing sub-partitions

We tried to run near neighbor query on a 1 million row table. A starting pointis 1000 sec which
is ~16 min 40 sec (based on earlier tests we determined it takes 1 sec to do near neighbor for
1K row table).

The testing included:

* Running near neighbor query by selecting rows with given subChunkld into in memory
table and running near neighbor query there. It took 7 min 43 sec.

* Running near neighbor query by running neighbor once for each subChunkld, without
building sub-chunks. It took 39 min 29 sec.

* Running near neighbor query by mini-near neighbor once for each subChunkld, without
building sub-chunks, using in-memory table. It took 13 min 13 sec.

5.1.5 Billion row table / reference catalog

One of the catalogs we will need to support is the reference catalog, even in DC3b it is ex-
pected to contain about one billion rows. We have run tests with a table containing 1 billion
rows catalog (containing USNO-B data) to determine how feasible it is to manage a billion row
table without partitioning it. These tests are described in details at: http://dev.1sstcorp.org/
trac/wiki/DbStoringRefCat This revealed that single 1-billion row table usage is adequate in
loading and indexing, but query performance was only acceptable when the query predicates
selectivity using an index was a small absolute number of rows (1% selectivity is too loose).
Thus alarge fraction of index-scans were unacceptably slow and the table join speed was also
slow.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

21


http://dev.lsstcorp.org/trac/wiki/db/SubPartOverhead
http://dev.lsstcorp.org/trac/wiki/db/SubPartOverhead
http://dev.lsstcorp.org/trac/wiki/DbStoringRefCat
http://dev.lsstcorp.org/trac/wiki/DbStoringRefCat

ST

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-06

5.1.6 Compression

We have done extensive tests to determine whether it is cost effective to compress LSST
databases. This included measuring how different data types and indexes compress, and
performance of compressing and decompressing data. These tests are described in details
at https://dev.1lsstcorp.org/trac/wiki/MyIsamCompression. We found that table data com-
pressed only 50%, but since indexes were not compressed, there was only about 20% space
savings. Table scans are significantly slower due to CPU expense, but short, indexed queries
were only impacted 40-50%.

5.1.7 Full table scan performance

To determine performance of full table scan, we measured:

1. rawdisk speed with dd if=<large file> of=/dev/zeroand got 54.7 MB/sec (2,048,000,000
bytes read in 35.71 sec)

2. speed of select count(*) from XX where muRA = 4.3 using a 1 billion row table. There
was no index on mMuRA, so this forced a full table scan. Note that we did not do SELECT
* to avoid measuring speed of converting attributes. The scan of 72,117,127,716 bytes
took 28:49.82 sec, which is 39.8 MB/sec.

So, based on this test the full table scan can be done at 73% of the raw disk speed (using MySQL
MyISAM).

5.1.8 Low-volume queries

A typical low-volume queries to the best of our knowledge can be divided into two types:

+ analysis of a single object. This typically involves locating a small number of objects
(typically just one) with given objectlds, for example find object with given id, select at-
tributes of a given galaxy, extract time series for a given star, or select variable objects
near known galaxy. Corresponding representative queries:

SELECT * from Object where objectid=<xx>
SELECT * from Source where objectld =<xx>

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

22


https://dev.lsstcorp.org/trac/wiki/MyIsamCompression

ST

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-06

+ analysis of objects meeting certain criteria in a small spatial region. This can be repre-
sented by a query that selects objects in a given small ra/dec bounding box, so e.g.:

SELECT * FROM Object

WHERE ra BETWEEN :raMin AND :raMax
AND decl BETWEEN :declMin AND :declMax
AND zMag BETWEEN :zMin AND :zMax

Each such query will typically touch one or a few partitions (few if the needed area is near
partition edge). In this test we measured speed for a single partition.

Proposed partitioning scheme will involve partitioning each large table into a “reasonable”
number of partitions, typically measured in low tens of thousands. Details analysis are done
in the storage spreadsheet [LDM-141]. Should we need to, we can partition the largest tables
into larger number of smaller partitions, which would reduce partition size. Given the hard-
ware available and our time constraints, so far we have run tests with up to 10 million row
partition size.

We determined that if we use our custom spatial index (“subChunkld”), we can extract 10K
rows out of a 10 million row table in 30 sec. This is too long - low volume queries require
under 10 sec response time. However, if we re-sort the table based on our spatial index, that
same query will finish in under 0.33 sec.

We expect to have 50 low volume queries running at any given time. Based on details disk
I/0 estimates, we expect to have ~200 disk spindles available in DR1, many more later. Thus,
it is likely majority of low volume queries will end up having a dedicated disk spindle, and for
these that will end up sharing the same disk, caching will likely help.

Note that these tests were done on fairly old hardware (7 year old).

In summary, we demonstrated low-volume queries can be answered through an index (ob-
jectld or spatial) in well under 10 sec.

5.1.9 Solid state disks

We also run a series of tests with solid state disks to determine where it would be most cost-
efficient to use solid state disks. The tests are described in details in Document-11701. We
found that concurrent query execution is dominated by software inefficiencies when solid-

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

23



ST

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

state devices (SSDs) with fast random /O are substituted for slow disks. Because the cost
per byte is higher for SSDs, spinning disks are cheaper for bulk storage, as long as access
is mostly sequential (which can be facilitated with shared scanning). However, because the
cost per random 1I/0 is much lower for SSDs than for spinning disks, using SSDs for serving
indexes, exposure metadata, perhaps even the entire Object catalog, as well as perhaps for
temporary storage is advised. This is true for the price/performance points of today’s SSDs.
Yet even with high IOPS performance from SSDs, table-scan based selection is often faster
than index-based selection: a table-scan is faster than an index scan when >9% of rows are
selected (cutoff is >1% for spinning disk). The commonly used 30% cutoff does not apply for
large tables for present storage technology.

5.2 Data Challenge Related Tests

During each data challenge we test some aspects of database performance and/or scalability.
In DC1 we demonstrated ingest into database at the level of 10% of DR1, in DC2 we demon-
strated near-real-time object association, DC3 is demonstrating catalog construction and DC4
will demonstrate the end user query/L3 data production.

In addition to DC-related tests, we are running standalone tests, described in detail in Sec-
tion @

5.2.1 DC1: data ingest

We ran detailed tests to determine data ingest performance. The test included comparing
ingest speed of MySQL against SQL Server speed, and testing different ways of inserting data
to MySQL, including direct ingest through INSERT INTO query, loading data from ASCII CSV
files. In both cases we tried different storage engines, including MyISAM and InnoDB. Through
these tests we determined the overhead introduced by MySQL is small (acceptable). Building
indexes for large tables is slow, and requires making a full copy of the involved table. These
tests are described in details in Document-1386. We found that as long as indexes are dis-
abled during loading, ingest speed is typically CPU bound due to data conversion from ASCII to
binary format. We also found that ingest into InnoDB is usually ~3x slower than into MyISAM,
independently of table size.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

24



ST

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06
5.2.2 DC2: source/object association

One of the requirements is to associated DiaSource with Object is almost real-time. Detailed
study how to achieve that has been done in conjunction with the Data Challenge 2. The de-
tails are covered at: https://dev.1lsstcorp.org/trac/wiki/db/DC2/PartitioningTests and the
pages linked from there. We determined that we need to maintain a narrow subset of the
data, and fetch it from disk to memory right before the time-critical association in order to
minimize database-related delays.

5.2.3 DC3: catalog construction

In DC3 we demonstrated catalog creation as part of the Data Release Production.

5.2.4 Winter-2013 Data Challenge: querying database for forced photometry

Prior to running Winter-2013 Data Challenge, we tested performance of MySQL to determine
whether the database will be able to keep up with forced photometry production which runs
in parallel. We determined that a single MySQL server is able to easily handle 100-200 simulta-
neous requests in well under a second. As a result we chose to rely on MySQL to supply input
data for forced photometry production. Running the production showed it was the right de-
cision, e.g., the database performance did not cause any problems. The test is documented
at https://dev.lsstcorp.org/trac/wiki/db/tests/ForcedPhoto.

5.2.5 Winter-2013 Data Challenge: partitioning 2.6 TB table for Qserv

The official Winter-2013 production database, as all past data challenged did not rely on Qserv,
instead, plain MySQL was used instead. However, as an exercise we partitioned and loaded
this data set into Qserv. This data set relies on table views, so extending the administrative
tools and adding support for views inside Qserv was necessary. In the process, administrative
tools were improved to flexibly use arbitrary number of batch machines for partitioning and
loading the data. Further, we added support for partitioning RefMatch* tables; RefMatch
objects and sources have to be partitioned in a unique way to ensure they join properly with
the corresponding Object and Source tables.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

25


https://dev.lsstcorp.org/trac/wiki/db/DC2/PartitioningTests
https://dev.lsstcorp.org/trac/wiki/db/tests/ForcedPhoto

[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

5.2.6 Winter-2013 Data Challenge: multi-billion-row table

The early Winter 2013 production resulted in 2.6 TB database; the largest table, ForcedSource,
had nearly 4 billion rowsB Dealing with multi-billion row table is non-trivial are requires spe-
cial handling and optimizations. Some operations, such as building an index tend to take a
long time (tens of hours), and a single ill-tuned variable can result in 10x (or worse) perfor-
mance degradation. Producing the final data set in several batches was in particular challeng-
ing, as we had to rebuild indexes after inserting data from each batch. Key lessons learned
have been documented at https://dev.1lsstcorp.org/trac/wiki/mysqgllLargeTables. Issues we
uncovered with MySQL (myisamchk) had been reported to the MySQL developers, and were
fixed immediately fixed.

In addition, some of the more complex queries, in particular these with spatial constraints had
to be optimized.E The query optimizations have been documented at https://dev.1sstcorp.
org/trac/wiki/db/MySQL/Optimizations.

6 Risk Analysis

6.1 Potential Key Risks

Insufficient database performance and scalability is one of the major risks [Document-
7025].

We have a prototype system (Qserv) that will be turned into a production system. Given that
a large fraction of its functionality is derived from two stable, production quality, open source
components (MySQL and XRootD), turning it into production system is possible during the
LSST construction phase.

A viable alternative might be to use an off-the-shelf system. In fact, an off-the-shelf solution
could present significant support cost advantages over a production-ready Qserv, especially
if it is a system well supported by a large user and developer community. It is likely that an
open source, scalable solution will be available on the time scale needed by LSST (for the be-
ginning of LSST construction a stable beta would suffice, beginning of production scalability
approaching few hundred terabytes would be sufficient). Database systems larger than the

5t is worth noting that in real production we do not anticipate to manage billion+ rows in a single physical table
- the Qserv system that we are developing will split every large table into smaller, manageable pieces.
5Some of these optimizations will not be required when we use Qserv, as Qserv will apply them internally.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

26


https://dev.lsstcorp.org/trac/wiki/mysqlLargeTables
https://dev.lsstcorp.org/trac/wiki/db/MySQL/Optimizations
https://dev.lsstcorp.org/trac/wiki/db/MySQL/Optimizations

LARGE SYNOPTIC SURVEY TELESCOPE

[S57T

Data Management Database Design LDM-135 Latest Revision 2017-07-06

largest single LSST data set have been successfully demonstrated in production today. For
example, eBay manages a 10+ petabyte production database [[14] and expects to deploy a 36
petabyte system later in 2011. For comparison, the largest single LSST data set, including all
indexes and overheads is expected to be below 10 petabytes in size, and will be produced
~20 years from now (the last Data Release).[Z The eBay system is based on an expensive com-
mercial DBMS (Teradata), but there is a growing demand for large scale systems and growing
competition in that area (Hadoop, SciDB, Greenplum, InfiniDB, MonetDB, Caché and others).

Finally, a third alternative would be to use a closed-source, non free software, such as Caché,
InfiniDB or Greenplum (Teradata is too expensive). Some of these systems, in particular Caché
and InfiniDB are very reasonably priced. We believe the largest barrier preventing us from
using an off-the-shelf DBMS such as InfiniDB is spherical geometry and spherical partitioning
support.

Potential problems with off-the-shelf database software used, such as MySQL is another
potential risk. MySQL has recently been purchased by Oracle, leading to doubts as to whether
the MySQL project will be sufficiently supported in the long-term. Since the purchase, several
independent forks of MySQL software have emerged, including MariaDB (supported by one of
the MySQL founders), Drizzlef (supported by key architects of MySQL), and Percona. Should
MySQL disappear, these open-source, I\/IySQL-compatibIeE systems are a solid alternative.
Should we need to migrate to a different DBMS, we have taken multiple measures to minimize
the impact:

+ our schema does not contain any MySQL-specific elements and we have successfully
demonstrating using it in other systems such as MonetDB and Microsoft's SQL Server;

+ we do not rely on any MySQL specific extensions, with the exception of MySQL Proxy,
which can be made to work with non-MySQL systems if needed;

* we minimize the use of stored functions and stored procedures which tend to be DBMS-
specific, and instead use user defined functions, which are easier to port (only the inter-
face binding part needs to be migrated).

Complex data analysis. The most complex analysis we identified so far include spatial and
temporal correlations which exhibit O(n?) performance characteristics, searching for anoma-

"The numbers, both for eBay and LSST are for compressed data sets.
8Now abandoned: https://en.wikipedia.org/wiki/Drizzle_%28database_server%29
SWith the exception of Drizzle, which introduced major changes to the architecture.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

27


https://en.wikipedia.org/wiki/Drizzle_%28database_server%29

[S57T

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-06

lies and rare events, as well as searching for unknown are a risk as well - in most cases in-
dustrial users deal with much simpler, well defined access patters. Also, some analysis will
be ad-hoc, and access patterns might be different than these we are anticipating. Recently,
large-scale industrial users started to express strong need for similar types of analyses; un-
derstanding and correlating user behavior (time-series of user clicks) run by web companies,
searching for abnormal user behavior to detect fraud activities run by banks and web com-
panies, analyzing genome sequencing data run by biotech companies, and what-if market
analysis run by financial companies are just a few examples. Typically these analysis are ad-
hoc and involve searching for unknowns, similar to scientific analyses. As the demand (by rich,
industrial users) for this type of complex analyses grows, the solution providers are rapidly
starting to add needed features into their systems.

The complete list of all database-related risks maintained in the LSST risk registry:

DM-014: Database performance insufficient for planned load

* DM-015: Unexpected database access patterns from science users

+ DM-016: Unexpected database access patterns from DM productions
+ DM-032: LSST DM hardware architecture becomes antiquated

+ DM-060: Dependencies on external software packages

+ DM-061: Provenance capture inadequate

+ DM-065: LSST DM software architecture incompatible with de-facto community stan-
dards

+ DM-070: Archive sizing inadequate
+ DM-074: LSST DM software architecture becomes antiquated

* DM-075: New SRD requirements require new DM functionality

6.2 Risks Mitigations

To mitigate the insufficient performance/scalability risk, we developed Qserv, and demon-
strated scalability and performance. In addition, to increase chances an equivalent open-
source, community supported, off-the-shelf database system becomes available in the next

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

28



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

few years, we initiated the SciDB array-based scientific database project and work closely with
its development team. We also closely collaborate with the MonetDB open source columnar
database team - building on our Qserv lessons-learned, they are trying to add missing fea-
tures and turn their software into a system capable of supporting LSST needs. A demonstra-
tion is expected in late 2011. Further, to stay current with the state-of-the-art in peta-scale
data management and analysis, we continue a dialog with all relevant solution providers, both
DBMS and Map/Reduce, as well as with data-intensive users, both industrial and scientific,
through the XLDB conference and workshop series we lead, and beyond.

To understand query complexity and expected access patterns, we are working with LSST
Science Collaborations and the LSST Science Council to understand the expected query load
and query complexity. We have compiled a set of common queries [4] and distilled this setinto
a smaller set of representative queries we use for various scalability tests-this set represents
each major query type, ranging from trivial low volume, to complex correlations [3]. We have
also talked to scientists and database developers from other astronomical surveys, including
SDSS, 2MASS, Gaia, DES, LOFAR and Pan-STARRS.

To deal with unpredictability of analysis, we will use shared scans. With shared scans, users
will have access to all the data, all the columns, even these very infrequently used, at a pre-
dictable cost - with shared scans increasing complexity does not increase the expensive disk
I/0 needs, it only increases the CPU needs.

To keep query load under control, we will employ throttling to limit individual query loads.

7 Implementation of the Query Service (Qserv) Prototype

To demonstrate feasibility of running LSST queries without relying on expensive commercial
solutions, and to mitigate risks of not having an off-the-shelf system in time for LSST construc-
tion, we built a prototype system for user query access, called Query Service (Qserv). The sys-
tem relies on two production-quality components: MySQL and XRootD. The prototype closely
follows the LSST baseline database architecture described in Section .

7.1 Components

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

29



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

7.1.1 MysQL

MySQL is used as an underlying SQL execution engine. To control the scope of effort, Qserv
uses an existing SQL engine, MySQL, to perform as much query processing as possible. MySQL
is a good choice because of its active development community, mature implementation, wide
client software support, simple installation, lightweight execution, and low data overhead.
MySQL's large development and user community means that expertise is relatively common,
which could be important during Qserv's development or long-term maintenance in the years
ahead. MySQL's MyISAM storage engine is also lightweight and well-understood, giving pre-
dictable I/0 access patterns without an advanced storage layout that may demand more ca-
pacity, bandwidth, and IOPS from a tightly constrained hardware budget.

Itisworth noting, however, that Qserv's design and implementation do not depend on specifics
of MySQL beyond glue code facilitating results transmission. Loose coupling is maintained in
order to allow the system to leverage a more advanced or more suitable database engine in
the future.

7.1.2 XRootD

The XRootD distributed file system is used to provide a distributed, data-addressed, repli-
cated, fault-tolerant communication facility to Qserv. Re-implementing these features would
have been non-trivial, so we wanted to leverage an existing system. XRootD has provided
scalability, fault-tolerance, performance, and efficiency for over 10 years of in the high-energy
physics community, and its relatively flexible APl enabled its use as a more general commu-
nication medium instead of a file system. Since it was designed to serve large data sets, we
were confident that it could mediate not only query dispatch communication, but also bulk
transfer of results.

A XRootD cluster is implemented as a set of data servers and a redirector(s). A client connects
to the redirector, which acts as a caching namespace lookup service that redirects clients to
appropriate data servers. In Qserv, XRootD data servers become Qserv workers by plugging
custom code into XRootD as a custom file system implementation. The Qserv master dis-
patches work as an XRootD client to workers by writing to partition-addressed XRootD paths
and reads results from hash-addressed XRootD paths.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

30



LARGE SYNOPTIC SURVEY TELESCOPE

[S57T

Data Management Database Design LDM-135 Latest Revision 2017-07-06

spatial indexing, query
recovery, optimizations,
scheduling, aggregation

scanning, optimizations,
scheduling

FIGURE 3: XRootD.

While the primary purpose of XRootD is to provide a distributed clustered file system, it is
implemented as a plug-in component based system that allows “file” to be replaced by any
other resource object. Qserv makes use of this capability to cluster MySQL databases instead
of files. Hence, we dispense with calling XRootD a distributed file system and simply call is
a generic system for providing named communication paths, clustering, request scheduling,
and error recovery.

7.2 Partitioning

In Qserv, large spatial tables are fragmented into spatial pieces in the two-level partitioning
scheme. The partitioning space is a spherical space defined by two angles ¢ (right ascension/a)
and 6 (declination/s). For example, the Object table is fragmented spatially, using a coordinate
pair specified in two columns-right-ascension and declination. On worker nodes, these frag-
ments are represented as tables named Object_CC and Object_CC_SS where CCis the “chunk id”
(first-level fragment) and SS is the “sub-chunk id” (second-level fragment of the first larger frag-
ment. Sub-chunk tables are built on-the-fly to optimize performance of spatial join queries.
Large tables are partitioned on the same spatial boundaries where possible to enable joining
between them.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

31



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06
7.3 Query Generation

Qservis unusual (though not unique) in processing a user query into one or more queries that
are subsequently executed on off-the-shelf single-node RDBMS software. This is done in the
hopes of providing a distributed parallel query service while avoiding a full re-implementation
of common database features. However, we have found that it is necessary to implement a
query processing framework much like one found in a more standard database, with the ex-
ception that the resulting query plans contain SQL statements as the intermediate language.

A significant amount of query analysis not unlike a database query optimizer is required in
order to generate a distributed execution plan that accurately and efficiently executes user
queries. Incoming user queries are first parsed into an intermediate representation using a
modified SQL92-compliant grammar (Lubos Vnuk’s SqISQL2). The resulting query representa-
tion is equivalent to the original user query, and does not include any stateful interpretation,
but may not completely reflect the original syntax. The purpose of this representation is to
provide a semantic representation that may be operated upon by query analysis and transfor-
mation modules without the complexity of a parse tree containing every node in the original
EBNF grammar.

Once the representation has been created, the query representation is processed by two
sequences of modules. The first sequence operates on the query as a single statement. A
transformation step occurs to split the single representation into a “plan” involving multiple
phases of execution, one to be executed per-data-chunk, and a one to be executed to combine
the distributed results into final user results. The second sequence is applied on this plan to
apply the necessary transformations for an accurate result.

We have found that regular expressions and parse element handlers to be insufficient to ana-
lyze and manipulate queries for anything beyond the most basic query syntax constructions.

7.3.1 Processing modules

The processing modules perform most of the work in transforming the user query into state-
ments that can produce a faithful result from a Qserv cluster. These include:

+ Identify spatial indexing opportunities. This allows Qserv to dispatch spatially-restricted
queries on only a subset of the available chunks constituting a table. Spatial restrictions
given in Qserv-specific syntax are rewritten as boolean SQL clauses.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

32



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

+ Identify secondary index opportunities. Qserv databases designate one column (more
are under consideration) as a key column where its values are guaranteed to exist in one
spatial location. Identification allows Qserv to convert point queries on this column into
spatial restrictions.

+ Identify table joins and generate syntax to perform distributed join results. Qserv pri-
marily supports “near-neighbor” spatial joins for limited distances defined in the parti-
tioning coordinate space. Arbitrary joins between distributed tables are only supported
using the key column. Classify queries according to data coverage and table scanning.
By identifying tables scanned in a query, Qserv is able to mark queries for execution
using shared scanning, which greatly increases efficiency.

7.3.2 Processing module overview

Parsed query
structure

2. Logical modules
1

1 1

4. Split query

Parallel/merge
query structures
3. Physical modules

FEN B E
!

5. Perform partitioned

table substitution

Partitioned query
strings

FIGURE 4: Processing modules.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

33



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

This figure illustrates the query preparation pipeline that generates physical queries from an
input query string. User query strings are parsed (1) into a structured query representation
that is passed through a sequence of processing modules (2) that operate on that represen-
tation in-place. Then, it is broken up (3) into pieces that are explicitly intended for parallel
execution on table partitions and pieces intended to merge parallel results into user results.
Another processing sequence (4) operates on this new representation, and then finally, con-
crete query strings are generated (5) for execution.

The two sequences of processing modules provide an extensible means to implement query
analysis and manipulation. Earlier prototypes performed analysis and manipulation during
parsing, but this led to a practically unmaintainable code base and the functionality has been
ported the processing module model. Processing is split into two sequences to provide the
flexibility to modules that manipulate the physical structures while offering the simpler single-
query representation to modules that do not require the complexity. The clear separation
between parsing, whose only goal is to provide a intelligible and modifiable query represen-
tation, and the gserv-specific analysis and manipulation is a key factor in the overall flexibility,
maintainability, and extensibility of the system and should help the system adapt to current
and future LSST needs.

7.4 Dispatch

The baseline Qserv uses XRootD as a distributed, highly-available communications system
to allow Qserv frontends to communicate with data workers. Up until 2015, Qserv used
a synchronous client APl with named files as communication channels. The current base-
line system utilizes a general two-way named-channeling system which eliminates explicit file
abstractions in favor of generalized protocol messages that can be flexibly streamed. The
scheme is called Scalable Service Interface (SSI) and is built on top of XRootD. The interface
was specifically designed to hide underlying XRootD dependencies. This allows switching the
underlying implementation with minimal impact to Qserv.

7.4.1 Wire protocol

Qserv encodes query dispatches in ProtoBuf messages, which contain SQL statements to be
executed by the worker and annotations that describe query dependencies and character-
istics. Transmitting query characteristics allows Qserv workers to optimize query execution
under changing CPU and disk loads as well as memory considerations. The worker need not
re-analyze the query to discover these characteristics or guess at conditions that cannot be

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

34



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

determined by query inspection.

Query results are also returned by ProtoBuf messages. Current versions transmit a MySQL
dump file allowing the query results to be faithfully reproduced on the Qserv frontend, but the
baseline system will transmit results directly. Initial implementations avoided logic to encode
and decode data values, but experience with the prototype MonetDB worker backend proved
that data encoding and marshalling were a contained problems whose solution could signif-
icantly improve overall query latency by avoiding mutating metadata operations on worker
and frontend DBMS systems. Thus the baseline system will encode results in protobuf mes-
sages containing schema and row-by-row encoded data values. Streaming results directly
from worker dbms instances into frontend dbms instances is a technique under considera-
tion, as is a custom aggregation engine for results that would likely ease the implementation
of providing partial query results to end users.

7.4.2 Frontend

ABH In 2012, a new XRootD client APl was developed to address our concerns over the older
version's scalability (uncovered during a 150 node, 30TB scalability test). The new client API
began production use for the broader XRootD community in late 2012. Subsequently, work
began under our guidance towards an XRootD Qserv client APl that was based on request-
response interaction over named channels, instead of opening, reading, and writing files. A
production version of this API, the Scalable Service Interface (SSI) became available in early
2015 and Qserv has since been ported to use this interface. The port eliminated a significant
body of code that maps dispatching and result-retrieving to file operations. The SSI API will
reside in the Xroot code base, where it may be exercised by other projects.

The SSI API provides Qserv with a fully asynchronous interface that eliminates nearly all block-
ing threads used by the Qserv frontend to communicate with its workers. This eliminated
one class of problems we have encountered during large-scale testing. The SSI API has de-
fined interfaces that integrate smoothly with the Protobufs-encoded messages used by Qserv.
Two novel features were specifically added to improve Qserv performance. The streaming
response interface enables reduced buffering in transmitting query results from a worker
mysqld to a the frontend, which lowers end-to-end query latency and reduces storage re-
quirements on workers. The out-of-band meta-data response which arrives prior to the data
results can be used to map out the Protobufs encoding and significantly simplify handling
response memory buffers.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

35



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

The fully asynchronous API is crucial on the master because of the large number of concur-
rent chunk queries in flight expected in normal operation. For example, with the sky splitinto
10k pieces, having 10 full-scanning queries running concurrently would have 100k concurrent
chunk queries-too large a number of threads to allow on a single machine. Hence, an asyn-
chronous API to XRootD is crucial. Threads are used to parallelize multiple CPU-bound tasks.
While it does not seem to be important to parse/analyze/manipulate a single user query in
parallel (and such a task would be a research topic), the retrieval and processing of results
could be done in parallel if some portion of the aggregation/merging were done in Qserv
code rather than loaded into the frontend’'s MySQL instance and merged via SQL queries.
Thus results processing should be parallelized among results from individual chunks, and
query parsing/analysis/manipulation can be parallelized among independent user queries.

7.4.3 Worker

The Qserv worker uses both threads and asynchronous calls to provide concurrency and par-
allelism. To service incoming requests from the XRootD API, an asynchronous APl is used to
receive requests and enqueue them for action. Specifically, the Scalable Service Interface (SSI)
is used on Qserv workers as well. The interface provides a mirror image of the actions taken
on the front-end making the logic relatively easy to follow and the implementation less error
prone.

Threads are maintained in a thread pool to perform incoming queries and wait on calls into
the DBMS's API (currently, the apparently synchrnous MySQL C-API). Threads are allowed to
run in observance of the amount of parallel resources available. The worker estimates the
I/0 dependency of each incoming chunk query in terms of the chunk tables involved and disk
resources involved, and attempts to ensure that disk access is almost completely sequential.
Thus if there are many queries that access the same table chunk, the worker allows as many
of them to run as there are CPU cores in the system, but if it has many queries that involve
different chunk tables, it allows fewer simultaneous chunk queries in order to ensure that only
one table scan per disk spindle occurs. Further discussion of this “shared scanning” feature
is described in shared-scans.

7.5 Threading Model

Nearly every portion of Qserv is written using a combination of threaded and asynchronous
execution.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

36



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

Qserv heavily relies on multi-threading to take advantage of all available CPU cores when
executing queries, as an example, to complete one full table scan on a table consisting of
1,000 chunks, 1,000 queries (processes) will be executed. To efficiently handle large num-
ber of processes that are executed on each worker, we ended up rewriting the XRootD client
and switching from thread-per-request model to a thread-pool model. The new client is com-

pletely asynchronous, with real call-backs.

mysqlproxy

Single-threaded Lua code

Frontend-python

Single-threaded asynchronous reactor; blocking-thread
per user query

Frontend-C++

Processing thread per user-query for preparation;
Results-merging thread-per-user-query on-demand;

Frontend-xrootd

Callback threads perform query transmission and re-
sults retrieval

Frontend-xrootd internal

Threads for maintaining worker connections (< 1 per
host)

Xrootd, cmsd

Small thread pools for managing live network connec-
tions and performing lookups

Worker-xrootd plugin

Small thread pool O(#cores) to make blocking mysql C-
API calls into local mysqld; callback threads from XRootD
perform admission/scheduling of tasks from frontend
and transmission of results

7.6 Aggregation

Qserv supports several SQL aggregation functions: AVG(), COUNT(), MAX(), MIN(), and SUM(),

and should support SQL92 level GROUP BY.

7.7 Indexing

The secondary index utilizes one or more tables using the InnoDB storage engine on each czar
to perform lookups on the database’s key colume (objectld). Performance tests (Figure E) ona
single, dual-core host with 1 TB hard disk storage (not SSD) have shown that this configuration
will support a full load of 40 billion rows in about 400,000 seconds (110 hours). Amore realistic
configuration with multiple cores and SSD storage is expected to meet the requirement of fully

loading in less than 48 hours.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

37




[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

Secondary index client performance (1M queries)

100000
MySQL Init (s)

= 10000 —+—MySQL Load (s)
Q
-#-MySQL Run (s

'E 1000 vQ 3
§ -&-MySQL Update (s)
(@) 100 *— . e -® i
J
S 10

1

10 100 1000 10000

Secondary Index Size (M entries)

FIGURE 5: Performance tests of MySQL-based secondary index.

To improve the performance of the InnoDB storage engine for queries, the secondary index
may be split across a small number (dozens) of tables, each containing a contiguous range of
keys. This splitting, if done, will be independent of the partitioning of the database itself. The
contiguity of key ranges will allow the secondary index service to identify the appropriate split
table arithmetically via an in-memory lookup.

7.7.1 Secondary Index Structure

The secondary index consists of three columns: the key (objectld), the chunk where all data
with that key are located (chunkld), and the subchunk within that chunk where data with
the key are located (subChunkld). The objectld is assigned by the science pipelines as a 64-
bit integer value; the chunkld and subChunkld are both 16-bit integers which identify spatial
regions on the sky.

7.7.2 Secondary Index Loading

The InnoDB storage engine loads tables most efficiently if it is provided input data which has
been presorted according to the table’s primary key. When the secondary index information
is collected for loading (from each worker node handling a collection of chunks), it is sorted

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

38



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-06

by objectld, and may be divided into roughly equal “splits”. Each of those splits is loaded into
a table en masse.

To fully optimize the loading and table splitting, the entire index should be collected from all
workers and pre-sorted in memory on the czar. This is not reasonable for 40 billion entries
(requiring a minimum of 480 GB memory, plus overhead). Instead, the index data from a
single worker can be assumed to be a “representative sample” from the full range of objectlds,
so table splitting can be done using the first worker's index data. The remaining workers will
be split and loaded according to those defined tables.

7.8 Data Distribution

LSST will maintain the released data store both on tape media and on a database cluster. The
tape archive is used for long-term archival. Three copies of the compressed catalog data will
be kept. The database cluster will maintain 3 online copies of the data. Because computer
clusters of reasonable size failure regularly, the cluster must maintain replicas in order to
provide continuous data access. Areplication factor of 3 (r=3) is needed in order to determine
data integrity by majority rule when one replica is corrupt.

If periodic unplanned downtime is acceptable, an on-tape replica may function as one of the
three. However, the use of tape dramatically increases the cost of recovering from a failure.
This may be acceptable for some tables, particularly those that are large and lesser-used,
although allowing service disruption may make it difficult to make progress on long-running
analysis on those large tables.

7.8.1 Database data distribution

The baseline database system will provide access for two database releases: latest and pre-
vious . Data for each release will be spread out among all nodes in the cluster.

Data releases are partitioned spatially, and spatial pieces (chunks) are distributed in a round-
robin fashion across all nodes. This means that area queries involving multiple chunks are
almost guaranteed to involve resources on multiple nodes.

Each node should maintain at least 20% free space of its data storage allocation. The re-
maining free space is then available to be “borrowed” when another node fails. This will a
temporary use of storage capacity until more server resources can be put online, until the

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

39



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

80% storage use is returned.

7.8.2 Failure and integrity maintenance

There will be failures in any large cluster of node, in the nodes themselves, in data storage
volumes, in networks access and so on. These failures will remove access to data that is
resident on those nodes, but this loss of data access should not affect that ability of scientists
to analyze the dataset as a whole. We need to set a data availability time over 99.5% to ensure
confidence of the community in the stability of the system. To ensure this level of data access,
and to allow acceptable levels of node failures in a cluster, there will be replication of data on
a table level throughout the cluster.

The replication level will be that each table in the database will exist 3 times, each on separate
nodes. A monitoring layer to the system will check on the availability of each table every few
hours, although this time will be tuned in practice. When this layer sees that a table has less
than three replicas available, this will initiate a replication of that table to another nodes, not
currently hosting that table. The times for the checking, and speed of replication will be tuned
to the stability of the cluster, such that about 5% of all tables at any given time will only have
1 or 2 replicas. Three replicas will ensure that tables will be available even in cases of large
failures, or when nodes need to be migrated to new hardware in bulk.

Should an entire node fail, replicating that data to another single node would be fairly expen-
sive in terms of time. As of July 2013, a 3TB drive will have a write speed of 60/150/100 MB/s
(min/max/avg) [12] and refilling this single drive would remove access to that replica of the
data for about 8 hours. We plan on having free space on each node, and only fill local stor-
age to 80%. The free space will be used for temporary storage of tables on failures, where
replicas can take place in parallel between nodes into this free space. When new nodes with
free storage are added to the cluster, then this data can be copied off this free space into the
drive, taking the full 8 hours, but there will still be 3 replicas of data during this time. Once
this is complete, this data will have 4 replicas for the short period of time while these tables
can be removed from the temporary storage, returning each node to 80% usage.

7.9 Metadata

Qserv needs to track various metadata information, static (not changing or changing very
infrequently), and dynamic (run-time) in order to maintain schema and data integrity and
optimize the cluster usage.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

40



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

7.9.1 Static metadata

Qserv typically works with databases and tables distributed across many different machines:
it breaks individual large tables into smaller chunks and distributes them across many nodes.
All chunks that belong to the same logical table must have the same schema and partitioning
parameters. Different tables often need to be partitioned differently, for example some tables
might be partitioned with overlap (such as the Object table), some might be partitioned with
no overlap (for example the Source table), and some might not need partitioning at all (e.g.,
a tiny Filter table). Further, there might be different partitioning strategies, such as spherical-
box based, or HTM-based. All this information about schema and partitioning for all Qserv-
managed databases and tables needs to be tracked and kept consistent across the entire
Qserv cluster.

Implementation of the static metadata in Qserv is based on hierarchical key-value storage
which uses a regular MySQL database as a storage backend. This database is shared between
multiple masters and it must be served by a fault-taulerant MySQL server instance, e.g. using
a master-master replication solution like MariaDB Galera cluster. Database consistency is
critical for metadata and it should be implemented using one of the transactional database
engines in MySQL.

Static metadata may contain following information:

+ Per-database and per-table partitioning and scan scheduling parameters.

* Table schema for each table, used to create database tables in all worker and master
instances; the schema in the master MySQL instance can be used to obtain the same
information when a table is already created.

+ Database and table state information, used primarily by the process of database and
table creation or deletion.

+ Definitions for the set of worker and master nodes in a cluster including their availability
status.

The main clients of the static metadata are:

« Administration tools (command-line utilities and modules) which allow one to define or
modify metadata structures.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

41



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-06

+ Qserv master(s), mostly querying partitioning parameters but also allowed to modify
table/database status when deleting/creating new tables and databases. Master(s) should
not depend on node definitions in metadata, the xrootd facility is used to communicate
with workers.

+ Special “watcher” service which implements distributed process of database and table
management.

+ Aninitial implementation of the data loading application which will use the node defini-
tions and will create/update database and table definitions. This initial implementation
will eventually be replaced by a distributed loading mechanism which may be based on
separate mechanisms.

7.9.2 Dynamic metadata

In addition to static metadata, a Qserv cluster also needs to track its current state, and keep
various statistics about query execution. This sort of data is udated frequently, several times
per query execution, and is called dynamic metadata.

Prototype implementation of the dynamic metadata is based on MySQL database. Like static
metadata it needs to be shared between all master instances and will be served via a single
fault-talerant MySQL instance which will be shared with static metadata database.

Dynamic metadata will contain the following information:

+ Definition of every master instance in a Qserv cluster.

* Record of every SELECT-type query processed by cluster. This record includes query
processing state and some statistical/timing information.

+ Per-query list of table names used by the asynchronous queries, this information is used
to delay table deletion while async queries are in progress.

* Per-query worker information, which includes chunk id and identifying information for
the worker processing that chunk id. This information will be used to transparently
restart the master or migrate query processing to a different master in case of master
failure.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

42



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

The most significant use of the dynamic metadata is to track execution of asyncronous queries.
When an async query is submitted it is registered in dynamic metadata and its ID is returned
to the user immediately. Later users can request status information for that query ID which
is obtained from dynamic metadata. When query processing is finished users can request re-
sults from that query, and the master can obtain the location of the result data from dynamic
metadata.

Additionally dynamic metadata can be used to collect statistical information about queries
that were executed in the past which may be an important tool in understanding and improv-
ing system performance.

7.9.3 Architecture

The Qserv metadata system is implemented based on master/server architecture: the meta-
data is centrally managed by a Qserv Metadata Server (gms). The information kept on each
worker is kept to a bare minimum: each worker only knows which databases it is supposed
to handle, all remaining information can be fetched from the gms (through Qserv) as needed.
This follows our philosophy of keeping the workers as simple as possible.

Thereal-time metadata is managed inside gms in in-memory tables, periodically synchronized
with disk-based table. Such configuration allows reducing gms latency—important to avoid
delaying query execution time. Should a gms failure occur, the in-flight queries for which the
information was lost will be restarted. Since the synchronization to disk-based table will occur
relatively frequently (eg. at least 1 per minute), the lost time is insignificant. To avoid over-
loading the gms with, only the high-level information available from Qserv-master is stored
in gms; all worker-based information is cached in a scratch space locally to each worker in a
simple, raw form (e.g, key-value, ASClI file), and can be fetched on demand as needed.

At the moment we use xml-rpc as a message protocol to communicate with gms. It was a
natural choice given that this protocol is already in use by Qserv master.

7.9.4 Typical Data Flow

Static metadata:

1. Parts of the static metadata known before data is partitioned/loaded are loaded by the
administration scripts responsible for loading data into the database, then these scripts

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

43



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

start data partitioner.

2. The data partitioner reads static metadata loaded by the administration scripts, loads
remaining information.

3. When Qserv starts, it fetches all static metadata and caches it in memory in a special,
in-memory optimized C++ structure.

4. The contents of the in-memory metadata cache inside Qserv can be refreshed on de-
mand if the static metadata changes (for example, when a new database or a table is
added).

Dynamic-metadata:

1. Master loads the information for each query (when it starts, when it completes).

2. Detailed statistics are dumped by each worker into a scratch space kept locally. This in-
formation can be requested from each worker on demand. A typical use case: if all
chunk-queries except one completed, gms would fetch statistics for the still-running
chunk-query to estimate when the query might finish, whether to restart this query etc.

7.10 Shared Scans

Arbitrary full-table scanning queries must be supported in LSST's baseline catalog, and in or-
der to provide this support cost-effectively and efficiently, Qserv implements shared scans.
Shared scans effectively reduces the 1/0 cost of executing multiple scanning queries concur-
rently, reducing the system hardware need and purchasing costs.

Shared scans reduce overall I/0 costs by forcing incoming queries to share. When multiple
queries scan the same table, theoretically, they can completely share I/0 and incur only the
I/0 cost of a single query rather than the sum of their individual costs. In general, it is difficult
for queries to share I/0 because their arrival times are random and uncorrelated. Each query
begins scanning at different times, and because LSST's catalog tables will be so large, general
system caching is ineffective. In Qserv, scanning queries are broken up into many parts, and
shared scanning forces each query to operate on the same portion and thus share 1/0 cost,
rather than allowing each to perform its own ordered scan and incur costs individually.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

44



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

7.10.1 Background

Historically, shared scanning has been a research topic that has very few real-world imple-
mentations. We know of only one implementation in use (Teradata). Most database imple-
mentations assume OS or database caching is sufficient, encouraging heavy use of indexing
to reduce the need of table scans. However, our experiments have shown that when tables
are large enough (by row count) and column access sufficiently variable (cannot index enough
columns when there are hundreds to choose from), indexes are insufficient. With large tables,
indexes no longer fit in memory, and even when they do fit in memory, the seek cost to re-
trieve each row is dominant when the index selects a percentage of rows, rather than some
finite number (thousands or less).

7.10.2 Implementation

The implementation of shared scans in Qserv is in two parts. The first part is a basic classifica-
tion of incoming queries as scanning queries or non-scanning queries. A query is considered
to scan a table if it depends on non-indexed column values and involves more than k chunks
(where k is a tunable constant). Note that involving multiple chunks implies that the query se-
lects from at least one partitioned table. This classification is performed during query analysis
on the front-end and leveraging table metadata. The metadata includes a “scan rating”, which
is set by hand. Higher scan ratings indicate larger tables that take longer to read from disk.
The identified “scan tables” and their ratings are marked and passed along to Qserv workers,
which use the information in scheduling the fragments of these scanning queries.

The second part of the shared scans implementation is a scheduling algorithm that orders
query fragment execution to optimize cache effectiveness. Because Qserv relies on individual
off-the-shelf DBMS instances on worker nodes, it is not allowed to modify those instances to
implement shared scans. Instead, it issues query fragments ordered to maximize locality of
access in data and time, and tries to lock the files associated with the tables in memory as
much as possible. Using the identified scan tables and their ratings, the worker places them on
the appropriate scheduler. There will be at least three schedulers. One for queries expected
to complete in under an hour, which are expected to be related to the Object table. One for
queries expected to take less than eight hours, expected to be related to Object_Extra. And
one for scans expected to take eight to twelve hours for ForcedSource and/or Source tables.
The reasoning being that a single slow query can impede the progress of a shared scan and
all the other user queries on that scan. There may be a need for another scheduler to handle
queries taking more than 12 hours.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

45



LARGE SYNOPTIC SURVEY TELESCOPE

[S57T

Data Management Database Design LDM-135 Latest Revision 2017-07-06

Each scheduler places incoming chunk queries into one of two priority queues sorted by chunk
id then scan rating of the individual tables. If the query is for a chunk after the currently scan-
ning chunk id, it is placed on the active priority queue, otherwise it is placed on the pending
priority queue. After chunk id, the priority queue is sorted by the table with highest scan rating
to ensure that the largest tables in the chunk are grouped together.

Once the query is on the appropriate scheduler, the algorithm proceeds as follows. When a
dispatch slot is available, it checks the highest priority scheduler. If that scheduler has a query
fragment, hereafter called tasks, and it is not at its quota limit, it is allowed to start its next
task, otherwise the worker checks the next scheduler. It continues doing this until a task has
been started or all the schedulers have been checked.

Each scheduler is only allowed to start a task under certain circumstances. There must be
enough threads available from the pool so that none of the other schedulers are starved for
threads as well as enough memory available to lock all the tables for the task in memory. If
the scheduler has no tasks running, it may start one task and have memory reserved for the
tables in that task. This should prevent any scheduler from hanging due to memory starvation
without requiring complicated logic but could incur extra disk I/0. More on locking tables in
memory later.

Schedulers check for tasks by first checking the top of the active priority queue. If the active
priority queue is empty, and the pending priority queue is not, then the active and pending
queues are swapped with the task being taken from the top of the “new” active queue.

Since the queries are being run by a separate DBMS instance of which there is little control of
how it goes about running queries, the worker can control when queries are sent to the DBMS
and also lock files in memory. Files in memory are among the most likely items to be paged
out when memory resources are low, which would increase disk 1/0. Locking files in memory
prevents this from happening. However, care must taken in choosing how much memory
can be used for locking files. Use too much and there will be a significant impact on DBMS
performance. Set aside too little, and schedulers will not make optimum use of the resources
available and may be forced to run tasks without actually locking the files in memory.

The memory manager controls which files are locked in memory. When a scheduler tries to
run a task, the task asks the memory manager to lock all the shared scan tables it needs.
The memory manager determines which files are associated with the tables. If the files are
already locked in memory and there is enough memory available to lock the files which are

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

46



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

not already locked, the task is given a handle and allowed to run. When the task completes,
it hands the handle back to the memory manager. If it was the last task using any particular
table, the memory for the files used by that table is freed.

When the memory manager locks a file, it does not read the file. It only sets aside memory
for the file to occupy when it is read by the DBMS. In the special case where a task can run
even though there is not enough memory available, those tables that cannot fit are put on a
list of reserved tables and their size is subtracted from the quota until they can be locked or
freed. When memory is freed, the memory manager will try to lock the reserved tables.

Because Qserv processes interactive, short queries concurrently with scanning queries, its
query scheduler should be able to allow for those queries to complete without waiting for
a query scan. To achieve this, Qserv worker nodes choose between the scan scheduler de-
scribed above and a simpler grouping scheduler. Incoming queries with identified scan tables
are admitted to the scan scheduler, and all other queries are admitted to the grouping sched-
uler. The grouping scheduler is a simple scheduler that is a simple variant of a plain FIFO
(first-in-first-out) scheduler. Like a FIFO scheduler, it maintains a queue of queries to exe-
cute, and operates identically to a FIFO scheduler with one exception-queries are grouped
by chunk id. Each incoming query is inserted into the queue behind another query on the
same chunk, and at the back if no queued query matches. The grouping scheduler assumes
that the queue will never get very long, because it is intended to only handle short interactive
queries lasting fractions of seconds, but groups its queue according to chunk id in order to
provide a minimal amount of access locality to improve throughput at a limited cost to latency.
Some longer queries will be admitted to the grouping scheduler even though they are scan-
ning queries, provided that they have been determined to only scan a single chunk. Although
these non-shared scan query will disrupt performance of the overall scan on the particular
disk on a worker, the impact is thought to be small because each of these represents all (or
a large fraction of) the work for a single user query, and the impact is amortized among all
disks on all workers.

For discussion about the performance of the existing prototype, refer to demo-shared-scans.

7.10.3 Memory management

To minimize system paging when multiple threads are scanning the same table, we imple-
mented a memory manager called memman. When a shared scan is about to commence,
the shared scan scheduler informs memman about the tables the query will be using and

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

47



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

how important it is to keep those tables in memory during the course of the query. When
directed to keep the tables in memory, memman opens each data base table file, maps itinto
memory, and then locks the pages to prevent the kernel from stealing the pages for other
uses. Thus, once a file page is faulted in, it stays in memory and allows other threads to scan
the contents of the page without incurring additional page faults. Once the shared scan of
the table completes, memman is told that the tables no longer need to remain in memory.
memman frees up the pages by unlocking them and deleting the mapping.

This type of management is necessary to satisfy system paging requirements because the
prime paging pool is the set of unlocked file system pages.

7.10.4 XRootD scheduling support

When the front-end dispatches a query, the XRootD normally picks the least used server in an
attempt to spread the load across all of the nodes holding the required table. While this works
well for interactive queries, it is hardly ideal for shared scan queries. In order to optimize
memory and I/0 usage, queries for the same table in a shared scan should all be targeted
to the same node. A new scheduling mode was added to the XRootD cmsd called affinity
scheduling. The front-end can tell XRootD whether or not a particular query has affinity to
other queries using the same table. Queries that have affinity are always sent to the same
node relative to the table they will be using. This allows the back-end scheduler to minimize
paging by running the maximum number of queries against the same table in parallel. Should
that node fail, XRootD assigns another working node that has the table as the target node for
queries that have affinity.

7.10.5 Multiple tables support

Handling multiple tables in shared scans requires an additional level of management. The
scheduler will aim to satisfy a throughput yielding average scan latencies as follows:

* Object queries: 1 hour
* Object, Source queries (join): 12 hours
* Object, ForcedSource queries (join): 12 hours

. Object_Extras@ queries (join): 8 hours.

9This includes all Object-related tables, e.g., Object_Extra, Object_Periodic, Object_NonPeriodic, Object_APMean

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

48



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

As stated in 8.10.2, there will be schedulers for queries that are expected to take one hour,
eight hours, or twelve hours. The schedulers group the the tasks by chunk id and then the
highest scan rating of the all tables in the task. The scan ratings are meant to be unique per
table and indicative of the size of the table, so that this sorting places scans using the largest
table from the same chunk next to each other in the queue. Using scan rating allows flexibility
to work with data sets with schemas different than that of LSST.

Since scans are not limited to specific tables, complicated joins could occur in user queries
that could take more than twelve hours to process. The worker may also need to be able to
identify user queries that are too slow for the current scheduler based on the time it takes to
complete tasks for that query. This indicates there may be a need for a scheduler to handle
queries with very long run times.

7.11 Level 3: User Tables, External Data

Level 3 tables including tables generated by users, and data catalogs brought from outside,
depending on their type and size, will be either partitioned and distributed across the pro-
duction database servers, or kept unpartitioned in one central location. While the partitioned
and distributed Level 3 data will share the nodes with Level 2 data, it will be kept on dedicated
disks, independent from the disks serving Level 2 data. This will simplify maintenance and
recoverability from failures.

Level 3 tables will be tracked and managed through the Qserv Metadata System (gms), de-
scribed in Section @ This includes both the static, as well as the dynamic metadata.

7.12 Cluster and Task Management

Qserv delegates management of cluster nodes to XRootD. The XRootD system manages clus-
ter membership, node registration/de-registration, address lookup, replication, and commu-
nication. Its Scalable Service Interface (SSI) APl provides data-addressed communication chan-
nels to the rest of Qserv, hiding details like node count, the mapping of data to nodes, the
existence of replicas, and node failure. The Qserv manager focuses on dispatching queries to
endpoints and Qserv workers focus on receiving and executing queries on their local data.

Cluster management performed outside of XRootD does not directly affect query execution,
but include coordinating data distribution, loading, nodes joining/leaving and is discussed in
gserve-admin. The SSI API includes methods that allow dynamic updates to the data view

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

49



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

of an XRootD cluster. So that when new tables appear or disappear, the XRootD system wiill
incorporate that information for future scheduling decisions. Thus, clusters can dynamically
change without the need to restart the XRootD system.

7.13 Fault Tolerance

Qserv approaches fault tolerance in several ways. The design exploits the immutability of the
underlying data by replicating and distributing data chunks across a cluster such that in the
event of a node failure, the problem can be isolated and all subsequent queries re-routed
to nodes maintaining duplicate data. Moreover, this architecture is fundamental to Qserv's
incremental scalability and parallel performance. Within individual nodes, Qserv is highly
modularized with minimal interdependence among its components, which are connected via
narrow interfaces. Finally, individual components contain specialized logic for minimizing,
handling, and recovering from errors.

The components that comprise Qserv include features that independently provide failure-
prevention and failure-recovery capabilities. The MySQL proxy is designed to balance its load
among several underlying MySQL servers and provide automatic fail-over in the event a server
fails. The XRootD system provides multiple managers and highly redundant servers to provide
high bandwidth, contend with high request rates, and cope with unreliable hardware. And the
Qserv master itself contains logic that works in conjunction with XRootD to isolate and recover
from worker-level failures.

A worker-level failure denotes any failure mode that can be confined to one or more worker
nodes. In principle, all such failures are recoverable given the problem nodes are identified
and alternative nodes containing duplicate data are available. Examples of such failures in-
clude a disk failure, a worker process or machine crashing, or network problems that render
a worker unreachable.

Consider the event of a disk failure. Qserv's worker logic is not equipped to manage such a
failure on localized regions of disk and would behave as if a software fault had occurred. The
worker process would therefore crash and all chunk queries belonging to that worker would
be lost. The in-flight queries on its local mysqld would be cleaned up and have resources freed.
The Qserv master’s requests to retrieve these chunk queries via XRootD would then return an
error code. The master responds by re-initializing the chunk queries and re-submits them to
XRootD. Ideally, duplicate data associated with the chunk queries exists on other nodes. In
this case, XRootD silently re-routes the request(s) to the surviving node(s) and all associated

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

50



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-06

queries are completed as usual. In the event that duplicate data does not exist for one or more
chunk queries, XRootD would again return an error code. The master will re-initialize and re-
submit a chunk query a fixed number of times (determined by a parameter within Qserv)
before giving up, logging information about the failure, and returning an error message to
the user in response to the associated query.

Error handling in the event that an arbitrary hardware or software bug (perhaps within the
Qserv worker itself) causes a worker process or machine to crash proceeds in the same man-
ner described above. The same is true in the event that network loss or transient sluggish-
ness/overload has the limited effect of preventing XRootD from communicating with one or
more worker nodes. As long as such failures are limited to a finite number of workers and do
not extend to the Qserv master node, XRootD is designed to record the failure and return an
error code. Moreover, if duplicate data exists on other nodes, this will be registered within
XRootD, which will successfully route any subsequent chunk queries.

In the event of an unrecoverable error, the Qserv master is equipped with a status/error mes-
saging mechanism designed to both log detailed information about the failure and to return a
human-readable error message to the user. This mechanism includes C++ exception handling
logic that encapsulates all of the master’s interactions with XRootD. If an unrecoverable excep-
tion occurs, the master gracefully terminates the query, frees associated resources, logs the
event, and notifies the user. Qserv's internal status/error messaging system also generates
a status message and timestamp each time an individual chunk query achieves a milestone.
Such milestones include: chunk query dispatch, written to XRootD, results read from XRootD,
results merged, and query finalized. This real-time status information provides useful context
in the event of an unrecoverable error.

Building upon the existing fault-tolerance and error handling features described above, future
work includes introducing a heart-beat mechanism on worker nodes that periodically pings
the worker process and will restart it in the event it becomes unresponsive. Similarly, a mas-
ter monitoring process could periodically ping worker nodes and restart a worker machine if
necessary. We are also considering managing failure at a per-disk level, but this would require
research since application-level treatment of disk failure is relatively rare. It should also be
possible to develop an interface for checking the real-time status of queries currently being
processed by Qserv by leveraging its internally used status/error messaging mechanism.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

51



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

7.14 Next-to-database Processing

We expect some data analyses will be very difficult, or even impossible to express through
SQL language. This might be particularly useful for time-series analysis. For this type of anal-
yses, we will allow users to execute their analysis algorithms in a procedural language, such
as Python. To do that, we will allow users to run their own code on their own hardware re-
sources co-located with production database servers. Users then run queries on the produc-
tion database which stream rows directly from database cluster nodes to the user processing
cluster, where arbitrary code may run without endangering the production database. This
allows their incurred database 170 needs to be satisfied using the database system'’s shared
scanning infrastructure while providing the full flexibility of running arbitrary code.

7.15 Administration
7.15.1 Installation

Qserv as a service requires a number of components that all need to be running, and con-
figured together. On the master node we require mysqld, mysql-proxy, XRootD, cmsd, gserv
metadata service, and the gserv master process. On each of the worker nodes there will also
be the mysqld, cmsd, and XRootD service. These major components come from the MySQL,
XRootD, and Qserv distributions. But to get these to work together we will also require many
more software package, such as protobuf, lua, expat, libevent, python, zope, boost, java, antlr,
and so on. And many of these require more recent versions than you are provided in most
system distributions. We have an installation layer, developed by SLAC, and LPC in Clermont-
Ferrand, France in collaboration, which will determine the packages, configure, compile and
install them in an automated process.

Currently, the Qserv installation procedure supports only the official LSST platform— RHELS6,
and SL6 Linux distributions. Other UNIX-like systems will be supported in the future as needed.
The Qserv package first can be downloaded from SLAC for install. In the initial README there
are basic install procedures, which start with a bootstrap script, that will perform a yum install
of needed packages distributed with RHEL6, where the versions will support the Qserv install.
Once that is done an install script can be started. This will first download needed packages
not shipped with RHEL6 from SLAC, and get those installed first. All software will be installed
into a sandbox root path, and all installed by the production username. Along with this is
an install of MySQL from source that will be configured for Qserv. These further packages
will be configured to run together, and then Qserv will be complied and linked to these in-

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

52



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

stalled packages. All this runs without user interaction, and usually completes within 15 to 20
minutes, to provide a complete Qserv either master or worker node.

7.15.2 Data loading

As previously mentioned, Data Release Production will not write directly to the database.
Instead, the DRP pipelines will produce binary FITS tables and image files that are reliably
archived as they are produced. Data will be loaded into Qserv in bulk for every table, so that
tables are either not available, or complete and immutable from the user query access per-
spective.

For replicated tables, these FITS files are converted to CSV (e.g. by harvesting FITS image
header keyword value pairs, or by translating binary tables to ASCII), and the resulting CSV
files areloaded directly into MySQL and indexed. For partitioned tables like Object and Source,
FITS tables are fed to the Qserv partitioner, which assigns partitions based on sky coordinates
and converts to CSV.

In particular, the partitioner divides the celestial sphere into latitude angle “stripes” of fixed
height H. For each stripe, a width W is computed such that any two points in the stripe with
longitudes separated by at least W have angular separation of at least H. The stripe is then
broken into an integral number of chunks of width at least W, so that each stripe contains
a varying number of chunks (e.g. polar stripes will contain just a single chunk). Chunk area
varies by a factor of about pi over the sphere. The same procedure is used to obtain sub-
chunks: each stripe is broken into a configurable number of equal-height “substripes”, and
each substripe is broken into equal-width subchunks. This scheme is preferred over the Hi-
erarchical Triangular Mesh for its speed (no trigonometry is required to locate the partition
of a point given in spherical coordinates), simplicity of implementation, and the relatively fine
control it offers over the area of chunks and sub-chunks.

The boundaries of subchunks constructed as described are boxes in longitude and latitude -
the overlap region for a subchunk is defined as the spherical box containing all points outside
the subchunk but within the overlap radius of its boundary.

The task of the partitioner is to find the IDs of the chunk and subchunk containing the par-
titioning position of each row, and to store each row in the output CSV file corresponding to
its chunk. If the partitioning parameters include overlap, then the row’s partitioning position
might additionally fall inside the overlap regions of one or more subchunks. In this case, a

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

53



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

copy of the row is stored for each such subchunk (in overlap CSV files).

Tables that are partitioned in Qserv must be partitioned identically within a Qserv database.
This means that chunk tables in a database share identical partition boundaries and identical
mappings of chunk id to spatial partition. In order to facilitate table joining, a single table's
columns are chosen to define the partitioning space and all partitioned tables (within a re-
lated set of tables) are either partitioned according that pair of columns, or not partitioned
at all. Our current plan chooses the Object table’s ra_PS and decl_PS columns, meaning that
rows in the Source and ForcedSource tables will be partitioned according to the Objects they
reference.

There is one exception: we allow for pre-computed spatial match tables. As an example, such
a table might provide a many-to-many relationship between the LSST Object catalog and a
reference catalog from another survey, listing all pairs of LSST Objects and reference objects
separated by less than some fixed angle. The reference catalog cannot be partitioned by
associated Object, as more than one Object might be matched to a reference object. Instead,
the reference catalog must be partitioned by reference object position. This means that a row
in the match table might refer to an Object and reference object assigned to different chunks
stored on different Qserv worker nodes.

We avoid this complication by again exploiting overlap. We mandate (and verify at partitioning
time) that no match pair is separated by more than the overlap radius. When partitioning
match tables, we store a copy of each match in the chunk of both positions referenced by that
match. When joining Objects to reference objects via the match table then, we are guaranteed
to find all matches to Objects in chunk C by joining with all match records in C and all reference
objects in C or in the overlap region of C.

All Qserv worker nodes will partition subsets of the pipeline output files in parallel - we ex-
pect partitioning to achieve similar aggregate 1/0 rates to those of full table scans for user
query access, so that partitioning should complete in a low factor (2-3x) of the table scan
time. Once it does, each Qserv worker will gather all output CSV files for its chunks and load
them into MySQL. The structure of the resulting chunk tables is then optimized to maximize
performance of user query access (chunk tables will likely be sorted, and will certainly be
compressed), and appropriate indexes are built. Since chunks are sized to fit in memory, all
of these steps can be performed using an in-memory file-system. 1/0 costs are incurred only
when reading the CSV files during the load and when copying finalized tables (i.e. .MYD/.MYI
files) to local disk.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

54



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

The last phase of data loading is to replicate each chunk to one other Qserv worker node. We
will rely on table checksum verification rather than a majority rule to determine whether a
replica is corrupt or not.

The partitioner has been prototyped as a multi-threaded C++ program. It uses an in-memory
map-reduce implementation internally to scale across cores, and can read blocks of one or
more input CSV files in parallel. It does not currently understand FITS table files. CSV file writes
are also parallelized - each output chunk is processed by a single reducer thread and can be
written to in parallel with no application level locking. In preliminary testing, our partitioner
was able to sustain several hundred MB/s of both read and write bandwidth when processing
a CSV dump of the PT1.2 Source table.

We are investigating a pair of data loading optimizations. One is to have pipeline processes
either integrate the partitioning code or feed data directly to the partitioner, rather than com-
municating via persistent storage. The other is to write out tables in the native database
format (e.g. as .MYD files, ideally using the MySQL/MariaDB server code to do so), allowing
the CSV database loading step to be bypassed.

7.15.3 Administrative scripts

The administration of the gserv cluster will require a set of scripts, all run from the one master
machine, to control the large set of workers. The main admin script, gserv-admin, will supply
the base needs, with starting all processes needed for the service, in order, and taking down
all processes to stop the service. Also base monitoring of service is supplied here, to report
on processes that are running, and responding to base queries, to check on MySQL or XRootD
dying or locking up. Also is supplied is the updating of the configuration definitions from the
master out to all workers, such that all machines need to have the same configurations for
the services.

The base data loading onto the nodes tends to be a slightly detailed process, beyond the just
the data preparation. Up to now, data preparation produces text files in csv format, and then
these will be loaded into the MySQL layer as a MyISAM table. The schema for these tables will
need to have added to them the fields for chunk and subchunk number needed for the Qserv
service. The modification of the schema and the control of the loading of the data, which can
take hours, is done with the gserv-load script. The loading of the data is also done without
index creation, and then that is done after the data loading. We are also experimenting with
the use of compressed read-only tables for the data serving, and this is an option.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

55



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

Another needed setup for the data service in gsery, is the creation of the “emptyChunks” list.
The data will be spatially partitioned into “chunks”, as previously described, but the for the
complete service, the master process with need to know how many chunks exist in the data,
and which of these chunks contain no data. In queries which will involve a complete table
scan, which chunks to create query, or not, will need to be known. Once the data is loaded,
thereis a another script which will go out to nodes and see what chunks are there, and compile
a list of all possible chunks and which chunks do not contain data, or the “emptyChunks” lists.
This is loaded by the gserv master process at startup.

7.16 Result Correctness

To verify Qserv does not introduce any unexpectedly alter results (e.g., does not show the
same object twice or does not miss any objects on the chunk boundaries), we developed an
automated testbed, which allows us to run pre-set queries on pre-set data sets both through
plain MySQL and through Qserv, and compare results.

7.17 Current Status and Future Plans

As of now (June 2013) we have implemented a basic version of the system end-to-end. Our
prototype is capable of parsing a wide range of queries, including queries executed by our
QA system, “PipeQA”, rewriting them into sub-queries, executing these sub-queries in parallel
and returning results to the user. The implementation includes a generic parser, basic query
scheduler, job executor, query result collector. We demonstrated running all query types
(low, high, super-high such as large-area near-neighbor) including aggregations, scalably on
a 150-node cluster using 30 TB data set; and a smaller subset of queries scalably on 300-
node cluster (remaining tests in progress, expecting to complete in the next 2-3 weeks) we
also demonstrated the system performs well enough to meet the LSST query response time
requirements. We demonstrated the system can handle high-level of concurrency (10 con-
current queries simultaneously accessing 10,000 chunks each). We demonstrated the system
can recover from a variety of faults, or at minimum gracefully fail if the error is unrecoverable.
We extended SQL syntax coverage and ensured the system is capable of supporting all types
of queries executed over the course of recent data challenges by PipeQA and users. We im-
plemented a core foundation for the metadata, currently used for managing static metadata
about Qserv-managed databases and tables, a set of administrative tools, and scalable data
partitioner. We made the system easy to set up, resilient to typical failures and common user
mistakes. We implemented automated test bed. We consider the current prototype to have

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

56



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-06

a quality of a typical late-alpha / early-beta software.

Future work includes:

+ extending metadata to support run-time statistics, implementing query management
tools

+ implementing support for Level 3 data

+ completing initial shared scan implementation, testing and implementing concurrent
and synchronized shared scans on multiple spindles

+ demonstrating cross-match with external catalogs
+ improving interfaces for users (eg hiding internal tables)

* re-examining and improving query coverage, including more advanced SQL syntax, such
as sub-queries as needed

« improvements to administration scripts
+ support for HTM partitioning in Qserv

+ authentication and authorization

* resource management

+ early partition results

+ performance improvements

* partition granularity varying per table

* security

Extending metadata to support run-time statistics, implementing query management
tools. Qserv currently does not maintain any explicit run-time system state. Keeping such
state would simplify managing Qserv cluster, and building features such as query manage-
ment: currently there are no tools for inspecting and managing queries in-flight, and there
are no interfaces for halting queries except upon error detection. Itis clear that users and ad-
ministrators will need to list running queries, check query status and possibly abort queries.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

57



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-06

Implementing support for Level 3 data. Qserv will need to support level 3. That means
users should be able to maintain their own tables to store their own data or results from
previous queries. They should be able to create, drop, and update their own tables within the
system.

Completing initial shared scan implementation, testing and implementing concurrent
and synchronized shared scans on multiple spindles. The first prototype implementation
of shared scanning is mostly complete, with the remaining work focused on basic analysis
and characterization of incoming user queries to determine scanning tables and plumbing to
convey the appropriate hints to worker nodes.

Demonstrating cross-match with external catalogs. One of the use cases involves cross
matching with external catalogs. In case the catalogs to cross-match with is small, it will be
treated as a small table and replicated as metadata tables will be. For cross-matching with
larger catalogs, the catalog to cross-match with will need to be partitioned and distributed on
the worker nodes.

Improving interfaces for users. Many admin-type commands such as “list processes” or
“explain” are not ported to the distributed Qserv architecture, and thus will not show correct
result. At the moment we have disabled these commands. Additionally, commands such as
listing tables in a given database will have to be overloaded, for example, we should show
user a table “Object” (even though in practice such table does not exist in the Qserv system),
instead of all the chunk Object_XxxX tables, that are internal, and should not be exposed to the
end-user.

Re-examining and improving query coverage, including more advanced SQL syntax,
such as sub-queries as needed. We examined what queries users and production processes
execute, however we realize this query set is far from the complete list of queries we will see
in the future. All needed syntax needs to be understood and fully supported. Design and
feasibility evaluation for sub-query support. Qserv does not support SQL sub-queries. Since
there is evidence that such a capability might be useful to users, so we should formulate a
few possible designs and understand how easy/difficult they would be to implement. Note
that there are some alternative viable alternatives, such as splitting sub-queries into multiple
queries, and/or using session variables. A naive implementation that involves dumping all
sub-query results to disk and then reading these results from disk, similarly to how multiple
map/reduce stages are implemented, should be tractable to implement.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

58



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

Improvements to administration scripts. To further automate common tasks related to
database management, table management, partition management, data distribution, and
others we need to implement many improvements to the administration scripts.

Support for HTM partitioning in Qserv. HTM is an alternative to the rectangular box form
of spatial partitioning currently implemented in Qserv. Since HTM allows for more advanced
indexing and optimization, it may eventually replace the current partitioning algorithm.

Authentication and authorization. The current Qserv does not implement any form of se-
curity or privileges. All access is full access. A production database system should provide
some facility of user or role-based access so that usage can be controlled and resources can
be shared. This is in particular needed for Level-3 data products.

Resource management. A production system should have some way to manage/restrict
resource usage and provide quality-of-service controls. This includes a monitoring facility
that can track each node’s load and per-user-query resource usage.

Early partition results. When performing interactive exploration of an observational data
set, users frequently issue large-scale queries that produce undesired results, even after test-
ing such queries on small subsets of the data. We can ameliorate this behavior by providing
the investigator with early partial results from the query, allowing the user to recognize that
the returned values are incorrect and permitting the query to be aborted without wasting ad-
ditional resources. There are two mechanisms we will implement in Qserv for providing early
results. First, for queries that retrieve a filtered set of rows, matching rows can be returned
as their query fragments complete, well before all fragments finish. Second, for queries that
group, sort, or aggregate information and therefore perform a global operation after any per-
partition processing, the global operation can be applied to increasingly large subsets of the
per-partition results, returning an early partial result each time.

Performance improvements. Significant performance gain can be obtained by improving
scheduler. These improvements pose interesting state of the art computing challenges; more
details are available in Appendix D. In addition, some parts of Qserv are inefficient since they
were implemented under constraints of development time rather than efficiency, or maintain-
ability - rewriting them would result in further performance gains. Caching results for future
queries is another example of performance optimization that can yield significant speed im-
provements.

Partitioning granularity varying per table. Since large tables in LSST vary significantly in

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

59



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

row count and row size, it may be worthwhile to support partitioning with multiple granulari-
ties. For execution management it is useful to have partitions sized so that query fragments
have similar execution cost. To achieve this, partitions may need different spatial sizes.

Security. The system needs to be secure and resilient against denial of service attacks.

7.18 Open Issues

What follows is a (non-exhaustive) list of issues, technical and scientific, that are still being
discussed and where changes are possible.

+ Support for updates. Size of Level 1 catalog is relatively small, and the expected query
access patterns are relatively non-challenging, thus currently do not envision any need
to deploy scalable Qserv-like architecture for Alert Production. Should this change, we
will need to support updates in Qserv, which will likely have some non-trivial impact on
the architecture.

* Very large objects. Some objects (eg, large galaxies) are much larger than our overlap
region, in some cases their footprint will span multiple chunks. Currently we are working
with the object center, neglecting the actual footprint. While there are some science use
cases that would benefit from a system that tracks objects based on their footprint, this
is currently not a requirement. Potential solution would involve adding a custom index
similar to the r-tree-based indexes such as the TOUCH [[15].

+ Very large results. Currently, the front-end that disptached the query is responsible for
assembling the results. In general, this is not a scalable approach as the resources re-
quired to processes the results may be several orders of magnitude greater than those
needed to dispatch the query. One solution is to replicate the front-end to the extent
necessary to handle query results. Alternatively, the Scalable Service Interface can be
augmented to allow running disconnected queries. That is, once a particular front-end
dispatches a query it can get a handle to that query and disconnect from it. Another
server can, using that handle, reconnect to the query and process the results. This is a
more flexible model as it allows independent scaling of query dispatch and result pro-
cessing. It also has the aded benefit of not cancelling in-progress queries dispatched by
a particulr fron-end should that front-end die.

8 Large-scale Testing

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

60



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

8.1 Introduction
8.1.1 Ideal environment

Based on the detailed spreadsheet analysis, we expect the ultimate LSST production system
will be composed of few hundred database servers [LDM-144], so a realistic test should in-
clude a cluster of at least 100 nodes.

Total database size of a single data release will vary from ~1.3 PB (DR1) to ~15 PB (DR1 1).
Realistic testing requires at least ~20-30 TB of storage (across all nodes).

Note that a /ot of highly focused tests which are extremely useful to fine tune different aspects
of the system can be done on a very small, 2-3 cluster, or even on a single machine. An
example of that can be measuring the effect of table size on the performance of near-neighbor
join: this type of join will be done per sub-partition, and sub-partitions will be small (few K
rows), thus almost all tests involving a single sub-partition can be done on a single machine
with very little disk storage.

A significant amount of testing should be done where the dataset size exceeds the system
memory size by an order of magnitude. This testing is important to reveal system perfor-
mance in the presence of disk performance characteristics.

Itis essential to have at least two different types of catalogs: Object and Source. Of course this
data needs to be correlated, that is, the objects should corresponds to the sources. Having
these 2 tables will allow us to measure speed of joins. It is not necessary to have other types
of source-like tables (DiaSource, ForcedSource) - the tests done with Source should be a good
approximation.

The most important characteristic of the test data is its spatial distribution. The data should
reflect realistic densities: presence of very crowded or very sparse regions have influence on
how data is partitioned and on performance of certain queries (e.g., speed of near neighbor
inside one partition). Other than realistic spatial distribution, we need several fields to be
valid (e.g., magnitudes) in order to try some queries with predicates.

These tests are not only used to prove our system is capable of meeting the requirements,
but also as a mean to stress the system and uncover potential problems and bottlenecks.
In practice, whoever runs these tests should well understand the internals of the scalable

""These numbers are for single copy, data and indices, compressed when appropriate.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

61



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-06

architecture system and turning MySQL.

8.1.2 Schedule of testing

+ Selecting the base technology - Q2 2009
+ Determining the architecture - Q3 2009

* Pre-alpha tests focused on parallel distributed query execution engine, tests at small
scale (~20 nodes) - Q4 2009

* Most major features in (except shared scan, user tables), performance tests on mid-size
cluster (~100 nodes) - Q4 2010

+ Scalability and performance improvements and tests on a large cluster (150-250 nodes)
- Q42011

+ Large scale tests, performance tests on a large cluster (250-300 nodes) - Q2 2013
* Shared scans - Q3 2013

* Fault tolerance - Q4 2013

8.1.3 Current status of tests

We have run several large scale tests

1. (10/2009) A test with the “pre-alpha” version of our software written on top of MySQL,
using the Tuson cluster at LLNL (160 nodes, each node: two Intel Xeon 2.4 GHz GPUs
with 4 GB RAM and 1 local hard disk of 80 Gbs)

2. (2010) several 100-node tests run at SLAC [[16]. These tests helped us uncover many bot-
tlenecks and prompted rewriting parts of our software, as well as implementing several
missing features in XRootD.

3. (4/2011) A 30 TB test on 150-node SLAC cluster using Qserv in 40/100/150 node config-
urations, using 2 billion row Object and 32 billion row Source tables, total of 30 TB data
set.

4. (12/2012) A 100-terabyte test on JHU's Datascope 20-node cluster. Due to high instability
of the cluster this test turned into testing resilience to faults of Qserv and the associated
administrative tools.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

62



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

5. (05/2013) A 10,000-chunk test on a 120-node SLAC cluster to reproduce and understand
subtle issues with concurrency at scale.

6. (07/2013) A test on 300-node IN2P3 cluster to re-test scalability, performance, concur-
rency, and uncover unexpected issues and bottlenecks.

7. (08/2013) A demonstration of shared scans.

The tests 3-6 listed above are described in further details below.

8.2 150-node Scalability Test
8.2.1 Hardware

We configured a cluster of 150 nodes interconnected via gigabit Ethernet. Each node had 2
quad-core Intel Xeon X5355 processors with 16GB memory and one 500GB 7200RPM SATA
disk. Tests were conducted with Qserv SVN r21589, MySQL 5.1.45 and XRootD 3.0.2 with Qserv
patches.

8.2.2 Data

We tested using a dataset synthesized by spatially replicating the dataset from the LSST data
challenge (“PT1.1"). We used two tables: Objectand Source.l2 These two tables are among the
largest expected in LSST. Of these two, the Object table is expected to be the most frequently
used. The Source table will have 50-200X the rows of the Object table, and its use is primarily
confined to time series analyses that generally involve joins with the Object table.

The PT1.1 dataset covers a spherical patch with right-ascension between 358° and 5° and
declination between -7° and 7°. This patch was treated as a spherical rectangle and repli-
cated over the sky by transforming duplicate rows’' RA and declination columns, taking care
to maintain spatial distance and density by a non-linear transformation of right-ascension
as a function of declination. This resulted in an Object table of 1.7 billion rows (2TB) and a
Source table of 55 billion rows (30 TB).E The Source table included only data between -54°
and +54° in declination. The polar portions were clipped due to limited disk space on the
test cluster. Partitioning was set for 85 stripes each with 12 sub-stripes giving a ¢ height of

2The schema may be browsed online at http://1sst1.ncsa.uiuc.edu/schema/index.php?sVer=PT1_1
3Source for the duplicator is available at https://github.com/1sst/gserv/blob/master/admin/python/1lsst/
aserv/admin/dataDuplicator.py

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

63


http://lsst1.ncsa.uiuc.edu/schema/index.php?sVer=PT1_1
https://github.com/lsst/qserv/blob/master/admin/python/lsst/qserv/admin/dataDuplicator.py
https://github.com/lsst/qserv/blob/master/admin/python/lsst/qserv/admin/dataDuplicator.py

[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

~2.11° for stripes and 0.176° for sub-stripes. Each chunk thus spanned an area of approxi-
mately 4.5deg?, and each sub-chunk, 0.031deg?. This yielded 8,983 chunks. Overlap was set
to 0.01667° (1 arc-minute).

8.2.3 Queries

The current Qserv development focus is on features for scalability. We have chosen a set
of test queries that demonstrate performance for both cheap queries (interactive latency),
and expensive queries (hour, day latency). Runs of low volume queries ranged from 15 to 20
queries, while runs of high volume queries and super high volume queries consisted of only
a few or even one query due to their expense. All reported query times are according to the
command-line MySQL client (MySQL).

SELECT * FROM Object WHERE objectld = <objld>

In fig-150-node-low-vol-object-retrieval we can see that performance of this query is roughly
constant, taking about 4 seconds. Each run consisted of 20 queries. The slower performance
of Runs 1 and 4, where each execution took 9 seconds, were probably the result of competing
tasks in the cluster. We attribute the initial 8 second execution time in Run 5 and beyond to
cold cache conditions (likely the objectld index) in the cluster.

§ 8 [r— Run1
3 6 Run2
.qé 4 — Run3
= 2 Run4
S 0 Run5
§ 10 28 46 64 82 100118 Run6
ﬁj 1 19 37 55 73 91 109 —— Run?

Execution #

FIGURE 6: Low-volume object retrival.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

64



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

SELECT taiMidPoint, fluxToAbMag(psfFlux), fluxToAbMag(psfFluxErr), ra, decl
FROM Source

WHERE objectld = <objld>

This query retrieves information from all detections of a particular astronomical object, effec-
tively providing a time-series of measurements on a desired object. For testing, the objectld
was randomized as for the Low Volume 1 query, which meant that null results were retrieved
where the Source data was missing due to available space on the test cluster.

In fig-low-volume-time-series we see that performance is roughly constant at about 4 seconds

per query. Run 1 was done after Low Volume 1’s Run 1 and we discount its 9 second execution
times similarly as anomalous.

—~ 10

%) R

2

S 8

o

6

g 4 EE— Run']
=

_ 2 Run2
2 Run3
3 0

e 3 7 11151923273135394347

L

1 5 913172125293337414549

Execution #

FIGURE 7: Low-volume time series.

SELECT COUNT(*)

FROM Object

WHERE ra_PS BETWEEN 1 AND 2

AND decl_PS BETWEEN 3 AND 4

AND fluxToAbMag(zFlux_PS) BETWEEN 21 AND 21.5

AND fluxToAbMag(gFlux_PS)-fluxToAbMag(rFlux_PS) BETWEEN 0.3 AND 0.4
AND fluxToAbMag(iFlux_PS)—fluxToAbMag(zFlux_PS) BETWEEN 0.1 AND 0.12;

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

65



LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-06

In fig-low-volume-spatial-filter we see the same 4 second performance that was seen for the
other low volume queries. Again, the ~9 second performance in Run 2 could not be repro-
duced so we discount it as resulting from competing processes on the cluster.

5 13 21 29 37 45 53 61
1 9 17 25 33 41 49 57 65

©»

'g 12

8 10 A J

3 8

E’ 6 Run1
E 4 r— Run2
c g Run3
o

= —— Run4
3]

@

L

Execution Time (seconds)

FIGURE 8: Low-volume spatially-restricted filter.

SELECT COUNT(*) FROM Object

S 200

S m

S 150 -

n

© 100 m e = Run1
; 50 4 Run2
o L 2R 4 Run3
*g 0

0 1 2 3 4 5 6 7 8 9

L

Execution #

FIGURE 9: High volume count.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

66



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-06

SELECT objectld, ra_PS, decl_PS, uFlux_PS, gFlux_PS,
rElux_PS, iFlux_PS, zFlux_PS, yFlux_PS

FROM Object

WHERE fluxToAbMag(iFlux_PS) — fluxToAbMag(zFlux_PS) > 4

Using the on-disk data footprint (MySQL's MyISAM .MYD, without indexes or metadata) of
the Object table (1.824x10'? bytes), we can compute the aggregate effective table scanning
bandwidth. Run 3's 7 minute execution yields 4.0GB/s in aggregate, or 27MB/s per node,
while the other runs yield approximately 11GB/s in aggregate, or 76MB/s per node. Since
each node was configured to execute up to 4 queries in parallel, Run 3's bandwidth is more
realistic, given seek activity from competing queries and the disk manufacturer’s reported
theoretical transfer rate of 98MB/s.

3 500

[ -

8 400

o

; 300 H Run1
£ 200 + Run2
= H ¢ o A A

S 100 Run3
'*g 0 A Run4
e 1 2 3 4 5 6 7

L

Execution #

FIGURE 10: High volume full-sky filter.

SELECT COUNT(*) AS n, AVG(ra_PS), AVG(decl_PS), chunkld
FROM Object
GROUP BY chunkld

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

67



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

S 300

[

g 250

© 150 un
= 100 ¢ Run2
-"§ 0 ’ A Run4
® 1 2 3 4 5 6 7

L

Execution #

FIGURE 11: High volume full-sky filter.

This query computes statistics for table fragments (which are roughly equal in spatial area),
giving a rough estimate of object density over the sky. Itillustrates more complex aggregation
query supportin Qserv. This query is of similar complexity to High Volume 2, but fig-150-node-
high-volume-density illustrates measured times significantly faster, which is probably due to
reduced results transmission time. As mentioned for HV2, cache behavior was not controlled,
but the 4 minute time in Run 3 may be close.

SELECT COUNT(*)

FROM Object o1, Object 02

WHERE gserv_areaspec_box(-5,-5,5,-5)

AND gserv_angSep(ol1.ra_PS, ol.decl_PS,
o2.ra_PS, o2.decl PS) < 0.1

This query finds pairs of objects within a specified spherical distance which lie within a par-
ticular part of the sky. Over two randomly selected 100 deg? areas, the execution times were
about 10 minutes (667.19 seconds and 660.25 seconds). The resultant row counts ranged
between 3 to 5 billion. Since execution uses on-the-fly generated tables, the tables do not
fit in memory, and Qserv does not yet implement caching, we expect caching effects to be
negligible.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

68



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-06

SELECT o.objectld, s.sourceld, s.ra, s.decl,
o.ra_PS, o.decl_PS
FROM Object o, Source s
WHERE qserv_areaspec_box(224.1, -7.5, 237.1, 5.5)
AND o.objectld = s.objectld
AND gserv_angSep(s.ra, s.decl, o.ra_PS, o.decl_PS) > 0.0045

This is an expensive query - an O(kn) join over 150 square degrees between a 2TB table and a
30TB table. Each objectld is unique in Object, but is shared by 41 rows (on average) in Source,
so k ~ 41. We recorded times of a few hours (5:20:38.00, 2:06:56.33, and 2:41:03.45). The
variance is presumed to be caused by varying spatial object density over the three random
areas selected.

8.2.4 Scaling

We tested QserV's scalability by measuring its performance while varying the number of nodes
in the cluster. To simulate different cluster sizes, the frontend was configured to only dispatch
queries for partitions belonging to the desired set of cluster nodes. This varies the overall
data size proportionally without changing the data size per node (200-300GB). We measured
performance at 40, 100, and 150 nodes to demonstrate weak scaling.

8.2.4.1 Scalingwith small queries From fig-150-node-scaling-small-1 — fig-150-node-scaling-
small-3, we see that execution time is unaffected by node count given that the data per node

is constant. The spike in the 40-node configuration in fig-150-node-scaling-small-3 is caused

by 2 slow queries (23s and 57s); the other 28 executed in times ranging from 4.09 to 4.11
seconds.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

69



LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06
8
7
m
T 6
c
Q
@ 5
o 4
£
- 3
=3
=
3
o 1
o]
20 40 60 80 100 120 140 160

Cluster node count

FIGURE 12: Scaling with node count (1).

N
o

40 60 80 100 120 140 160

Execution Time (seconds)

Cluster Node Count

FIGURE 13: Scaling with node count (2).

S 8

c

o

o 6 .\._.
L

o 4

E

'_

s 2

2

30

3 20 40 60 80 100 120 140 160

Cluster Node Count

FIGURE 14: Scaling with node count (3).

8.2.4.2 Scaling with expensive queries High Volume

If Qserv scaled perfectly linearly, the execution time should be constant when the data per
node is constant. Infig-150-node-scaling-high-volume the times for high volume queries show

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

70



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-06

a slight increase. HV1 is a primarily a test of dispatch and result collection overhead and its
time increases linearly with the number of chunks since the front-end has a fixed amount of
work to do per chunk. Since we varied the set of chunks in order to vary the cluster size, the
execution time of HV1 should thus vary linearly with cluster size. HV3 seems to have a similar
trend since due to cache effects - its result was cached so execution became more dominated
by overhead.

The High Volume 2 query approximately exhibits the flat behavior that would indicate perfect
scalability. Caching effects may have clouded the results, but they did not dominate. If the
query results were perfectly cached, we expect the overall execution time to be dominated
by overhead as in HV1, and this is clearly not the case.

300
250

200

—— H\1
150

—pe | H\/ 3
100

50 /

0
20 40 60 80 100 120 140 160

Mean execution time (seconds)

FIGURE 15: Scaling with high volume queries.

Super High Volume

The tests on expensive queries did not show perfect scalability, but nevertheless, the mea-
surements did show some amount of parallelism. It is unclear why execution in the 100-node
configuration was the slowest for both SHV1 and SHV2. Our time-limited access to the cluster
did not allow us to repeat executions of these expensive queries and study their performance
in better detail.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

71



LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

3 800

c

o]

8 600 /\.
@

0 400

£

'_

— 200

o

3 0

8 20 40 60 80 100 120 140 160

Cluster Node Count

FIGURE 16: Scaling with super high volume queries.

8.2.5 Concurrency

v I
v+ |
v
v

0 50 100 150 200 250 300 350 400

Time (seconds)

FIGURE 17: Concurrency test.

We were able to test Qserv with multiple queries in flight. We ran 4 “streams” of queries: two
parallel invocations of HV2, one of LV1, and one of LV2. Each low volume stream paused for
1 second between queries. Figure 12 illustrates concurrent performance. We see that the
HV2 queries take about twice the time (5:53.75 and 5:53.71) as they would if running alone.
This makes sense since each is a full table scan that is competing for resources and shared
scanning has not been implemented. The first queries in the low volume streams execute
in about 30 seconds, but each of their second queries seems to get “stuck” in queues. Later
queries in the streams finish faster. Since the worker nodes maintain first- in-first-out queues
for queries and do not implement any concept of query cost, long queries can easily hog the
system. The slowness of low volume queries after the second queries may be curious at first
glance, since they should be queued at the end on their assigned worker nodes and thus

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

72



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

complete near the end of the HV2 queries. In that case, subsequent queries would land on
workers with nearly empty queues and execute immediately. This slowness can be explained
by query skew - short queries may land on workers that have or have not finished their work
on the high volume queries.

8.2.6 Discussion

8.2.6.1 Latency LSST'sdata access needs include supporting both small, frequent, interac-
tive queries and longer, hour/day-scale queries. We designed Qserv to operate efficiently in
both cases to avoid needing multiple systems, which would be costly in development, mainte-
nance, and hardware. Indexing was implemented in order to reduce latency for cheap queries
that only touch a small part of the data.

The current Qservimplementation incurs significant overhead in dispatching queries and col-
lecting results. In early development we decided to minimize the intelligence on each worker,
so the front-end master became responsible for preparing the SQL queries so that workers
did not need to perform parsing or variable substitution. Results collection is somewhat
heavyweight as well. MySQL does not provide a method to transfer tables between server
instances, so tables are dumped to SQL statements using mysgldump and reloaded on the
front-end. This method was chosen to speed prototyping, but its costs in speed, disk, net-
work, and database transactions are strong motivations to explore a more efficient method.

8.2.6.2 Solid-state storage Some of QserVv's design choices (e.g., shared scanning) are mo-
tivated by the need to work around poor seek performance characteristics of disks. Solid-state
storage has now become a practical alternative to mechanical disk in many applications. While
it may be useful for indexes, its current cost differential per unit capacity means that it is still
impractical to store bulk data. In the case of flash storage, the most popular solid-state stor-
age technology, shared scanning is still effective in optimizing performance since DRAM is
much faster than flash storage and flash still has “seek” penalty characteristics (though it is
much better than spinning disk).

8.2.6.3 Many core We expect the performance to be I/0 constrained, since the workload
is data, not CPU performance limited. It is unlikely that many cores can be leveraged on a
single node since they will be sized with only the number of disk spindles that saturate the
north bridge, but shared scanning should increase CPU utilization efficiency.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

73



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

8.2.6.4 Alternate partitioning The rectangular fragmentation in right ascension and dec-
lination, while convenient to visualize physically for humans, is problematic due to severe dis-
tortion near the poles. We are exploring the use of a hierarchical scheme, such as the hierar-
chical triangular mesh [[13] for partitioning and spatial indexing. These schemes can produce
partitions with less variation in area, and map spherical points to integer identifiers encoding
the points’ partitions at many subdivision levels. Interactive queries with very small spatial
extent can then be rewritten to operate over a small set of fine partition IDs. If chunks are
stored in partition ID order, this may allow I/0 to occur at below sub-chunk granularity without
incurring excessive seeks. Another bonus is that mature, well tested, and high-performance
open source libraries exist for computing the partition IDs of points and mapping spherical
regions to partition ID sets.

8.2.6.5 Distributed management The Qserv system is implemented as a single master
with many workers. This approach is reasonable and has performed adequately in testing,
but the bottlenecks are clear. A Qserv instance at LSST's planned scale may have a million
fragment queries in flight, and while we have plans to optimize the query management code
path, managing millions from a single point is likely to be problematic. The test data set de-
scribed in this paper is partitioned into about 9,000 chunks, which means that a launch of
even the most trivial full-sky query launches about 9,000 chunk queries.

One way to distribute the management load is to launch multiple master instances. This
is simple and requires no code changes other than some logic in the MySQL Proxy to load-
balance between different Qserv masters. Another way is to implement tree-based query
management. Instead of managing individual chunk queries, the master would dispatch
groups of them to lower-level masters which would could either subdivide and dispatch sub-
groups or manage the individual chunk queries themselves.

8.3 100-TB Scalability Test (JHU 20-node cluster)

In the fall of 2012, we were provided the opportunity to use a cluster of computers at John
Hopkins University (JHU), that were large memory, multi-processor computers, each with very
large storage attached, to setup as a Qserv service. There were 21 nodes provided for us, and
the nodes had two processors with 12 cores each of Intel Xeon X5650 CPUs at 2.67GHz. But
mounted as a data volume, were 22TB raid arrays, to provide a possible 450TB of storage.
This would provide a high volume storage test, but with a low number of compute nodes,
with one master node, and 20 worker nodes.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

74



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

The data used would be produced on each node, starting with a test dataset called “pt12”. This
test dataset was 220GB, but high density data in one particular spot in the sky, a few degrees
wide. We chose a high density spot of this data, and then duplicated with across the whole
sphere, to provide a high density dataset over the whole sky, yielding an estimated 100TB of
data.

The production of this large amount of data proved to have problems. The production was
rather slow, taking many weeks for a full production on each node. At first long processes
were setup, and the stability of the cluster was an issue, with processes dying after days of
running, and many smaller production processes were setup to get past stability issues. This
produced over 100TB of csv text files, into about 7000 chunks worth of data. Once that was
done, then this data was loaded into MySQL MyISAM tables, and with the large data sizes this
also took days.

Over the course of this time, often nodes would go out with problems, and be down for some
amount of time, before coming back. Often this would be with the data still on the mounted
volumes, but the loss of computing nodes would set back the time until the data would be
complete. But this was a small problem, than the problem of data stability. Once all the nodes
were up and running, the data service was still having problems. This was found to be either
loss or corruption of a few of the thousands of tables on the various nodes. With loss of data,
either data would be re-created or just blocked for testing. Over the course of testing, dealing
with data corruption was constant issue, but still a large percentage would be accessible at
least. Also a problem was file corruption on the install software, and a few nodes needed to
be reinstalled over the course of the testing. A full 100TB of data was generated, but only
about 85TB could ever be served, before the resources had to be given back.

But some testing was able to get done on this cluster. A full table scan was performed on the
Object data, although this was only on the aprox, 85TB of data was served, not the complete
100TB of data that was generated. The query was performed:

SELECT count(*) FROM Object

Fommmm - +
| count(*) |
Fom +
| 2059335968 |
Fom e +

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

75



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

1 row in set (19.26 sec)

Showing 2B objects in the table. The result here was after the query was performed a few
times, and the cache had been stabilized. This is similar to the times found from previous
testing.

The low volume test from access to a small portion of the sky was also performed. Using the
query:

SELECT count(*)

FROM Object

WHERE qgserv_areaspec_box(1,3,2,4)

AND scisql_fluxToAbMag (zFlux_PS) BETWEEN 21 AND 21.5

o +
| count(*) |
Fomm e +
| 748 |
Fom +

1 row in set (4.45 sec)

This time for access is also similar to previous testing, looking for the number of object in a
small part of the sky of a certain color. The ~4.5 sec. overhead here is a baseline overhead
for data access in this version of the gserv software.

A high volume data test was performed, looking for color information on records within a
certain range of color. This will scan over all objects, to return certain number of records. The
test query was:

SELECT objectld, ra_PS, decl_PS, uFlux_PS, gFlux_PS,
rFlux_PS ,iFlux_PS, zFlux_PS, yFlux_PS

FROM Object

WHERE scisql_fluxToAbMag (iFlux_PS) -
scisql_fluxToAbMag (zFlux_PS) > 4

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

76



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

This query returned 15695 records in 6 min 33.50 sec. Again this query was performed a num-
ber of times, and this time is the average time after the caches had stabilized. This query was
performed again, this time looking at a lower number of records, looking for the difference
between i and z flux of 5 this time. This query returned 2967 records, in 6 min 14.0 sec. The
time was a little lower this time, which was mostly the time to print the records to the screen,
where the rest of the time was the over-head in scanning the available object data to return
these records. The previous tests were done on 30TB of data, but using 150 nodes, although
these nodes had many less cores. But this test would return in about 180 sec there, where
here it is about 375 sec. The extra time here will come from the access of larger amounts of
data per node, and amount of data in general, and the access rate of the data storage.

8.4 Concurrency Tests (SLAC 100,000 chunk-queries)

A previous version of the Qserv master code had dedicated two fixed size thread pools to each
query, one for dispatching chunk queries, and the other for reading back results. The dispatch
pool was sized at a quite high 500 threads for two reasons. Firstly, one goal was to dispatch
work as quickly as possible, allowing the Qserv workers to prioritize as they know best. Sec-
ondly, the first query dispatch against a chunk takes ~5s, so that cluster cold start latency on a
full table scan of ~10,000 chunks takes approximately 100s with this many dispatch threads.
Subsequently, XRootD caching allows for near instantaneous dispatches in comparison.

The thread pool for result reads was given a much smaller size: just 20 threads per query. This
is because the Qserv master process can only exploit limited amounts of parallelism when
merging worker results for a single query. In fact, the main benefit of using a number as high
as 20 threads is that it reduces result merge latency when chunk query execution times (and
hence result availability times) are skewed.

An unfortunate consequence of this simple design was that running too many concurrent
queries would cause thread creation failures in the Qserv master process. We therefore
changed to a unified query dispatch and result reader thread pool model.

To test our ability to handle many concurrent full-table scan queries without running out
of threads, we partitioned the PT1.2 Object table into ~8,000 chunks, and distributed them
across an 80 node cluster at SLAC. The nodes in this cluster were quite old and had limited
quantities of RAM, making them the perfect workhorses for this sort of test. In particular, ask-
ing for more than ~1000 threads would cause Qserv master failure on this platform. Using the
new unified thread-pool design we were able to successfully run between 2 and 12 concur-

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

77



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

rent Object table scans each involving ~8,000 chunk queries, requiring a total execution time
of 2 to 8 minutes, thus demonstrating that the Qserv master can handle loads of ~100,000
in-flight chunk queries, even on very old hardware.

Note that using a unified thread pool for result reads requires special measures to avoid query
starvation. A single query can easily require 10,000 result reads and there will be far fewer
total threads in the pool. As a result, we must be careful to avoid assigning all threads to a
single query, or queries that should be interactive can easily become decidedly non-interactive
as they wait for a table scan to finish. Our unified thread pool implementation therefore
assigns available threads to the query using the fewest worker threads, and makes sure to
create new threads when a new query is encountered (up to some hard limit).

To test this, we setup Qserv with a single master node and a single worker node. The worker
was configured with ~12,000 empty chunk tables. We then submitted both full-table scans
(SELECT COUNT(*) FROM Object), and an interactive query (SELECT COUNT(*) FROM Object WHERE
objectId IN (1)) requiring just a single chunk query to answer. Though we were able to
demonstrate that the master immediately allocated threads to dispatch the lone interactive
chunk query and read back its results, the execution time of the interactive query was still far
higher than it should have been. It turns out this is because the Qserv worker uses a FIFO
chunk query scheduling policy, and the single chunk query corresponding to the interactive
user query was being queued up behind a multitude of chunk queries from the full table scan
on the worker side. We are currently working to address this deficiency as part of ongoing
work on shared scans.

8.5 300-node Scalability Test (IN2P3 300-node cluster)

The largest test we run to-date was run during July-September of 2013 on a 300-node cluster
at the IN2P3 center in France. The main purpose of the test was to test Qserv scalability and
performance beyond 150 nodes, and re-check concurrency at scale.

8.5.1 Hardware

Test machines were quad-core Intel(R) Xeon L5430 running at 2.66GHz speed, with small local
spinning disks (120GB of usable space), and 16GB of RAM per machine. We received an allo-
cation of 320 nodes, which was intended to allow for a 300 node test in spite of some failed
nodes (and indeed, 17 nodes failed during the tests!)

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

78



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-06

8.5.2 Data

With only 120GB of available storage per node, only a limited amount of data could get pro-
duced. We tuned our data synthesizer to produce 50GB of table data per node, giving 15TB
of aggregate data. 220GB of LSST PT1.2 data was synthesized into a dense stripe covering the
declination range -9° to +9°, setting the partitioning to 120 stripes and 9 substripes (1.5° x
1.5° chunks and 10 arc-minute-sided subchunks). This yielded 3,000 chunks of data, with 9 to
11 chunks of data on each node. The Object table had 0.4 billion rows, and the Source table
had 14 billion rows. Data partitions for the Source table averaged 4GB.

Data synthesis took a couple hours for the Object table and overnight for the Source table. Re-
cent work on the installation software enabled data loading ingest to happen within a couple
hours (comparing to ~6 days for the 150-node test we run two years earlier.)

8.5.3 Software stability issues identified

The initial Qserv installation did not function for queries involving 300 nodes, even though
subsets involving 10, 50, 100, and 150 nodes functioned properly. The first culprit was the
use of an older XRootD release that was missing recent patches for a particular client race
condition. Another culprit was instability exacerbated by excessive use of threads in the orig-
inal threading model that the testing in section 9.5 was to address. This was addressed by
re-tuning relevant threading constants. The new XRootD client has alleviated this problem.

8.5.4 Queries

SELECT * FROM Object WHERE objectld = <id>

End-to-end user execution time averaged at 1.1 seconds.

SELECT count(*)

FROM Object

WHERE qserv_areaspec_box(1,3,2,4) AND
scisql_fluxToAbMag (zFlux_PS) BETWEEN 21 AND 21.5

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

79



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-06

This average query response time was 1.3 sec. This is roughly the minimum end-to-end exe-
cution time for query that selects small region for this version of Qserv.

SELECT count(*) FROM Object
WHERE qserv_areaspec_box(1,2,3,4)
AND scisql_fluxToAbMag (zFlux_PS) BETWEEN 21 AND 21.5
AND scisql_fluxToAbMag (gFlux_PS)-

scisql_fluxToAbMag (rFlux_PS) BETWEEN 0.3 AND 0.4
AND scisql_fluxToAbMag (iFlux_PS)-

scisql_fluxToAbMag (zFlux_PS) BETWEEN 0.1 AND 0.12

This average query response time was 1.3 sec. The extra CPU expense of the conditions was
insignificant.

SELECT s.ra, s.decl

FROM Object o

JOIN Source s USING (objectld)

WHERE o.objectld = 142367243760566706
AND o.latestObsTime = s.taiMidPoint

This returned in an average time of 11.2 sec.

SELECT COUNT(*) FROM Object

End-to-end user execution time averaged 7.8 seconds. This is the minimum overhead to dis-
patch queries for all 3,000 chunks to all 300 nodes and retrieve their results. A condition-less
COUNT(*) is executed as a metadata lookup by MySQL when using MyISAM tables, involving
almost no disk 1/0.

Similar query executed on the Source table returned in 11.9 seconds.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

80



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE
Data Management Database Design LDM-135 Latest Revision 2017-07-06

SELECT COUNT(*) FROM LSST.Object WHERE gFlux_PS>1e-25

This query was repeated with different constants in the filtering condition, and the execution
time did not vary significantly - it returned in an average time of 8.45 sec - or less than 1
second longer than the condition-less COUNT(x) query.

SELECT objectld, ra_PS, decl_PS, uFlux_PS, gFlux_PS,
rElux_PS ,iFlux_PS, zFlux_PS, yFlux_PS

FROM Object

WHERE scisql_fluxToAbMag (iFlux_PS)-
scisql_fluxToAbMag (zFlux_PS)>4

Varying the flux difference filter in a range of 4-5, the execution time ranged between 7-9
seconds.

SELECT objectld, ra_PS, decl_PS,
scisql_fluxToAbMag (zFlux_PS)
FROM LSST. Object
WHERE scisql_fluxToAbMag (zFlux_PS) BETWEEN 25 AND 26

End-to-end execution time ranged from 7.7 to 8.4 seconds.

SELECT objectld

FROM Source

JOIN Object USING(objectid)
WHERE qserv_areaspec_box(1,3,2,4)

This returned in 9 min 42.9 sec. Some portion of this time was spent printing the results to
the screen (this test utilized a standard MySQL command-line client).

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

81



LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

SELECT COUNT(*) FROM Object o1, Object 02
WHERE gserv_areaspec_box(-5,-5,5,5)

AND scisql_angSep(ol1.ra_PS, o1.decl_PS,
o2.ra_PS, o2.decl_PS) < 0.1

This query finds pairs of objects within a specified spherical distance which lie within a large
part of the sky (100 deg? area). The execution times was 4 min 50 sec. The resultant row
counts was ~7 billion.

8.5.5 Scaling

We run a subset of the above queries on different number nodes (50, 100, 250, 200, 250, 300),
in “week scaling” configuration, to determine how our software scales.

execution time [sec]

O B N W & OO N © ©

50 100 150 200 250 300

node count

FIGURE 18: Dispatch overhead.

12
119
118
117
116
115
114
113
1121 = =
111

11

executiontime [sec]

50 100 150 200 250 300

node count

FIGURE 19: Simple object selection.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

82



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

35
34
33
32
31
30
29
28
27
26
25
50 100 150 200 250 300

execution time [sec]

node count

FIGURE 20: Select from a mid-size area.

8.5.6 Discussion

We showed linear scalability of the dispatch - see fig-in2p3-dispatch-overhead, achieving be-
low 10 sec (12 for Source catalog) times when run on the entire, 300 node cluster. Queries
that touch all chunks on all clusters are required to complete under an hour, so 10-12 sec
overhead is very low. During previous large scale tests we run on 150 nodes 2 years ago, we
were getting ~4 sec overhead. During this test, we measured 3.3 sec on 150-node configura-
tion, which indicates we reduced the overhead, however since hardware used for these two
tests was not the same, direct comparison would not be entirely fair.

We showed the overhead for simple, interactive queries was on the order of 1.8 sec when
dispatching a query on one of the 300-nodes (see fig-in2p3-simple-object-selection). Yes, we
can observe a non linearity starting from ~200 nodes, however that non-linearity is on the
order of 0.03 second when going from 200 to 300 nodes. Since we are required to answer
interactive queries under 10 sec, the <20% overhead is already acceptable, though we are
planning to reduce it further in the future.

We were able to run all interactive-type queries well under required 10 second, with the excep-
tion of simple Object-Source join, which tool 11.2 sec. The longer-than-ideal time is attributed
to unnecessary materialization of subchunks for every query that involves a join - this is ex-
pected to be optimized and alleviated in the near future.

More complex queries, such as a query that selects from a mid-size region showed linear
scalability as well (fig-in2p3-mid-size-area). The one time 6-sec “jump” between 100 and 150

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

83



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

node test is attributed to switching to different number of chunks: as we reduced the size
of the cluster from 150 to 100 nodes, we excluded some chunks that were previously falling
inside searched region.

We were also able to run complex queries, such as full table scans and near neighbor queries,
and did not observe any anomalies.

It is important to note that due to the ratio of data size to RAM, a large fraction of the data, in
particular for the “small” Object catalog was cached in memory. Such environment was par-
ticularly good for testing dispatch and result returning overheads, however it would be unfair
to approximate observed performance to production-size data sets, especially given that we
also had a smaller number of chunks (3,000 in the test vs expected 20,000 in production).

9 Other Demonstrations

9.1 Shared Scans

We have conducted preliminary empirical evaluation of our basic shared scan implementa-
tion. The software worked exactly as expected, and we have not discovered any unforeseen
challenges. For the tests we used a mix of queries with a variety of filters, different CPU load,
different result sizes, some with grouping, some with aggregations, some with complex math.
Specifically, we have measured the following:

+ Asingle full table scan through the Object table took ~3 minutes. Running a mix 30 such
queries using our shared scan code took 5 min 27 sec (instead of expected ~1.5 hour it'd
take if we didn’t use the shared scan code.)

+ A single full table scan through Source table took between ~14 min 26 sec and 14 min
36 sec depending on query complexity. Running a mix of 30 such queries using shares
scan code took 25 min 30 sec. (instead of over 7 hours).

In both cases the extra time it took comparing to the timing of a single query was related to
(expected) CPU contention: we have run 30 simultaneous queries on a slow, 4-core machine.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

84



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

In addition, we demonstrated running simultaneously a shared scan plus short, interactive
queries. The interactive queries completed as expected, in some cases with a small (1-2 sec)
delay.

9.2 Fault Tolerance

To prove Qserv can gracefully handle faults, we artificially triggered different error conditions,
such as corrupting random parts of a internal MySQL files while Qserv is reading them, or
corrupting data sent between various components of the Qserv (e.g., from the XRootD to the
master process).

9.2.1 Worker failure

These tests are meant to simulate worker failure in general, including spontaneous termina-
tion of a worker process and/or inability to communicate with a worker node.

When a relevant worker (i.e. one managing relevant data) has failed prior to query execution,
either 1) duplicate data exists on another worker node, in which case XRootD silently routes
requests from the master to this other node, or 2) the data is unavailable elsewhere, in which
case XRootD returns an error code in response to the master's request to open for write. The
former scenario has been successfully demonstrated during multi-node cluster tests. In the
latter scenario, Qserv gracefully terminates the query and returns an error to the user. The er-
ror handling of the latter scenario involves recently developed logic and has been successfully
demonstrated on a single-node, multi-worker process setup.

Worker failure during query execution can, in principle, have several manifestations.

1. If XRootD returns an error to the Qserv master in response to a request to open for
write, Qserv will repeat request for open a fixed number (e.g. 5) of times. This has been
demonstrated.

2. If XRootD returns an error to the Qserv master in response to a write, Qserv immedi-

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

85



[S57T

LARGE SYNOPTIC SURVEY TELESCOPE

Data Management Database Design LDM-135 Latest Revision 2017-07-06

ately terminates the query gracefully and returns an error to the user. This has been
demonstrated. Note that this may be considered acceptable behavior (as opposed to
attempting to recover from the error) since it is an unlikely failure-mode.

3. If XRootD returns an error to the Qserv master in response to a request to open for read,
Qserv will attempt to recover by re-initializing the associated chunk query in preparation
for a subsequentwrite. This is considered the most likely manifestation of worker failure
and has been successfully demonstrated on a single-node, multi-worker process setup.

4. If XRootD returns an error to the Qserv master in response to a read, Qserv immedi-
ately terminates the query gracefully and returns an error to the user. This has been
demonstrated. Note that this may be considered acceptable behavior (as opposed to
attempting to recover from the error) since it is an unlikely failure-mode.

9.2.2 Data corruption

These tests are meant to simulate data corruption that might occur on disk, during disk I/0, or
during communication over the network. We simulate these scenarios in one of two ways. 1)
Truncate data read via XRootD by the Qserv master to an arbitrary length. 2) Randomly choose
a single byte within a data stream read via XRootD and change it to a random value. The first
test necessarily triggers an exception within Qserv. Qserv responds by gracefully terminating
the query and returning an error message to the user indicating the point of failure (e.g. failed
while merging query results). The second test intermittently triggers an exception depending
on which portion of the query result is corrupted. This is to be expected since Qserv verifies
the format but not the content of query results. Importantly, for all tests, regardless of which
portion of the query result was corrupted, the error was isolated to the present query and
Qserv remained stable.

9.2.3 Future tests

Much of the Qserv-specific fault tolerance logic was recently developed and requires addi-
tional testing. In particular, all worker failure simulations described above must be replicated
within a multi-cluster setup.

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

86



ST

LARGE SYNOPTIC SURVEY TELESCOPE

9.3

Data Management Database Design LDM-135 Latest Revision 2017-07-06

Multiple Qserv Installations on a Single Machine

Once in operations, it will be important to allow multiple gserv instances to coexist on a single

machine. This will be necessary when deploying new Data Release, or for testing new version
of the software (e.g., MySQL, or Qserv). In the short term, it is useful for shared code develop-
ment and testing on a limited number of development machines we have access to. We have
successfully demonstrated Qserv have no architectural issues or hardcoded values such as
ports or paths that would prevent us from running multiple instances on a single machine.

10

[1]

[2]

[3]

[4]

[5]

[6]

[7]

References

[Document-1386], Becla, J., 2006, Database Ingest Tests, Document-1386, URL https://
ls.st/Document-1386

Becla, J., 2012, Spatial Join Performance, URL http://dev.1lsstcorp.org/trac/wiki/db/
SpatialJoinPerf

Becla, J., 2013, Queries Used for Scalability & Performance Tests, URL https://dev.
lsstcorp.org/trac/wiki/db/queries/ForPerfTest

Becla, J., Lim, K.T., 2013, Common Queries, URL https://dev.lsstcorp.org/trac/wiki/

db/queries

[LDM-141], Becla, J., Lim, K.T., 2013, Data Management Storage Sizing and I/0 Model, LDM-
141, URL https://1s.st/LDM-141

Becla, J., Lim, K.T., Monkewitz, S., Nieto-Santisteban, M., Thakar, A., 2008, In: Argyle, R.W.,
Bunclark, P.S., Lewis, J.R. (eds.) Astronomical Data Analysis Software and Systems XVII,
vol. 394 of Astronomical Society of the Pacific Conference Series, 114, ADS Link

[Document-11701], Becla, J., Lim, K.T., Wang, D., 2011, Evaluation of Solid State Disks,
Document-11701, URL https://1s.st/Document-11701

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

87


https://ls.st/Document-1386
https://ls.st/Document-1386
http://dev.lsstcorp.org/trac/wiki/db/SpatialJoinPerf
http://dev.lsstcorp.org/trac/wiki/db/SpatialJoinPerf
https://dev.lsstcorp.org/trac/wiki/db/queries/ForPerfTest
https://dev.lsstcorp.org/trac/wiki/db/queries/ForPerfTest
https://dev.lsstcorp.org/trac/wiki/db/queries
https://dev.lsstcorp.org/trac/wiki/db/queries
https://ls.st/LDM-141
http://adsabs.harvard.edu/abs/2008ASPC..394..114B
https://ls.st/Document-11701

ST

LARGE SYNOPTIC SURVEY TELESCOPE

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Data Management Database Design LDM-135 Latest Revision 2017-07-06

[DMTN-046], Becla, J., Lim, K.T., Wang, D., 2013, An investigation of database technologies,
DMTN-046, URL https://dmtn-046.1sst.1iq,
LSST Data Management Technical Note

Dorigo, A., EImer, P., Furano, F., Hanushevsky, A., 2005, WSEAS Transactions on Comput-
ers, 4, 348, URL http://xrootd.org/presentations/xpaper3_cut_journal.pdf

[LDM-144], Freemon, M., Pietrowicz, S., Alt, J., 2016, Site Specific Infrastructure Estimation
Model, LDM-144, URL https://1s.st/LDM-144

[Document-7025], Kantor, J., Krabbendam, V., 2011, DM Risk Register, Document-7025,
URL https://1s.st/Document-7025

Kirsch, N., 2012, WD Red 3TB NAS Hard Drive Review, URL http://www.legitreviews.com/
article/2092/3/

Kunszt, P.Z., Szalay, A.S., Thakar, A.R., 2001, In: Banday, AJ., Zaroubi, S., Bartelmann, M.
(eds.) Mining the Sky, 631, doi:10.1007/10849171_83, ADS Link

Monash, C., 2010, eBay followup — Greenplum out, Teradata > 10 petabytes,
Hadoop has some value, and more, URL http://www.dbms2.com/2010/10/06/

ebay-followup-greenplum-out-teradata-10-petabytes-hadoop-has-some-value-and-more/

Nobari, S., Tauheed, F., Heinis, T., et al., 2013, In: Proceedings of the 2013 ACM SIG-
MOD International Conference on Management of Data, SIGMOD '13, 701-712, ACM,
New York, NY, USA, doi:10.1145/2463676.2463700

[16] Wang, D., Becla, J., 2012, Phase Il Qserv Testing (up to 100 nodes), URL https://dev.

lsstcorp.org/trac/wiki/db/Qserv/Testing

DRAFT NOT YET APPROVED - The contents of this document are subject to configuration control by the
LSST DM Technical Control Team. - DRAFT NOT YET APPROVED

88


https://dmtn-046.lsst.io
http://xrootd.org/presentations/xpaper3_cut_journal.pdf
https://ls.st/LDM-144
https://ls.st/Document-7025
http://www.legitreviews.com/article/2092/3/
http://www.legitreviews.com/article/2092/3/
http://doi.org/10.1007/10849171_83
http://adsabs.harvard.edu/abs/2001misk.conf..631K
http://www.dbms2.com/2010/10/06/ebay-followup-greenplum-out-teradata-10-petabytes-hadoop-has-some-value-and-more/
http://www.dbms2.com/2010/10/06/ebay-followup-greenplum-out-teradata-10-petabytes-hadoop-has-some-value-and-more/
http://doi.org/10.1145/2463676.2463700
https://dev.lsstcorp.org/trac/wiki/db/Qserv/Testing
https://dev.lsstcorp.org/trac/wiki/db/Qserv/Testing

	Executive Summary
	Introduction
	Baseline Architecture
	Alert Production and Up-to-date Catalog
	Data Release Production
	User Query Access
	Distributed and parallel
	Shared-nothing
	Indexing
	Shared scanning
	Clustering
	Partitioning
	Long-running queries
	Technology choice


	Requirements
	General Requirements
	Data Production Related Requirements
	Query Access Related Requirements
	Discussion
	Implications
	Query complexity and access patterns


	Design Trade-offs
	Standalone Tests
	Spatial join performance
	Building sub-partitions
	Sub-partition overhead
	Avoiding materializing sub-partitions
	Billion row table / reference catalog
	Compression
	Full table scan performance
	Low-volume queries
	Solid state disks

	Data Challenge Related Tests
	DC1: data ingest
	DC2: source/object association
	DC3: catalog construction
	Winter-2013 Data Challenge: querying database for forced photometry
	Winter-2013 Data Challenge: partitioning 2.6 TB table for Qserv
	Winter-2013 Data Challenge: multi-billion-row table


	Risk Analysis
	Potential Key Risks
	Risks Mitigations

	Implementation of the Query Service (Qserv) Prototype
	Components
	MySQL
	XRootD

	Partitioning
	Query Generation
	Processing modules
	Processing module overview

	Dispatch
	Wire protocol
	Frontend
	Worker

	Threading Model
	Aggregation
	Indexing
	Secondary Index Structure
	Secondary Index Loading

	Data Distribution
	Database data distribution
	Failure and integrity maintenance

	Metadata
	Static metadata
	Dynamic metadata
	Architecture
	Typical Data Flow

	Shared Scans
	Background
	Implementation
	Memory management
	XRootD scheduling support
	Multiple tables support

	Level 3: User Tables, External Data
	Cluster and Task Management
	Fault Tolerance
	Next-to-database Processing
	Administration
	Installation
	Data loading
	Administrative scripts

	Result Correctness
	Current Status and Future Plans
	Open Issues

	Large-scale Testing
	Introduction
	Ideal environment
	Schedule of testing
	Current status of tests

	150-node Scalability Test
	Hardware
	Data
	Queries
	Scaling
	Concurrency
	Discussion

	100-TB Scalability Test (JHU 20-node cluster)
	Concurrency Tests (SLAC 100,000 chunk-queries)
	300-node Scalability Test (IN2P3 300-node cluster)
	Hardware
	Data
	Software stability issues identified
	Queries
	Scaling
	Discussion


	Other Demonstrations
	Shared Scans
	Fault Tolerance
	Worker failure
	Data corruption
	Future tests

	Multiple Qserv Installations on a Single Machine

	References

